Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118715, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490631

RESUMEN

Vegetation restoration exerts transformative effects on nutrient cycling, microbial communities, and ecosystem functions. While extensive research has been conducted on the significance of mangroves and their restoration efforts, the effectiveness of mangrove restoration in enhancing soil multifunctionality in degraded coastal wetlands remains unclear. Herein, we carried out a field experiment to explore the impacts of mangrove restoration and its chronosequence on soil microbial communities, keystone species, and soil multifunctionality, using unrestored aquaculture ponds as controls. The results revealed that mangrove restoration enhanced soil multifunctionality, with these positive effects progressively amplifying over the restoration chronosequence. Furthermore, mangrove restoration led to a substantial increase in microbial diversity and a reshaping of microbial community composition, increasing the relative abundance of dominant phyla such as Nitrospirae, Deferribacteres, and Fusobacteria. Soil multifunctionality exhibited positive correlations with microbial diversity, suggesting a link between variations in microbial diversity and soil multifunctionality. Metagenomic screening demonstrated that mangrove restoration resulted in a simultaneous increase in the abundance of nitrogen (N) related genes, such as N fixation (nirD/H/K), nitrification (pmoA-amoA/B/C), and denitrification (nirK, norB/C, narG/H, napA/B), as well as phosphorus (P)-related genes, including organic P mineralization (phnX/W, phoA/D/G, phnJ/N/P), inorganic P solubilization (gcd, ppx-gppA), and transporters (phnC/D/E, pstA/B/C/S)). The relationship between the abundance of keystone species (such as phnC/D/E) and restoration-induced changes in soil multifunctionality indicates that mangrove restoration enhances soil multifunctionality through an increase in the abundance of keystone species associated with N and P cycles. Additionally, it was observed that changes in microbial community and multifunctionality were largely associated with shifts in soil salinity. These findings demonstrate that mangrove restoration positively influences soil multifunctionality and shapes nutrient dynamics, microbial communities, and overall ecosystem resilience. As global efforts continue to focus on ecosystem restoration, understanding the complexity of mangrove-soil interactions is critical for effective nutrient management and mangrove conservation.


Asunto(s)
Microbiología del Suelo , Humedales , Suelo/química , Microbiota , Ciclo del Nitrógeno , Fósforo/metabolismo , Biodiversidad , Nitrógeno/metabolismo , Restauración y Remediación Ambiental/métodos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética
2.
Water Res ; 250: 121086, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171179

RESUMEN

Coastal wetlands have experienced considerable loss and degradation globally. However, how coastal degradation regulates sediment phosphorus (P) transformation and its underlying mechanisms remain largely unknown in subtropical coastal ecosystems. This study conducted seasonal field measurements using high-resolution diffusive gradient in thin films (DGT) and dialysis (Peeper) techniques, as well as a DGT-induced fluxes in sediments (DIFS) model, to evaluate the mobilization and diffusion of P along a degradation gradient ranging from pristine wetlands to moderately and severely degraded sites. We observed that sediment P is diminished by coastal degradation, and severely degraded sites exhibit a decline in the concentration of available P, despite the presence of distinct seasonal patterns. High-resolution data based on DGT/Peeper analysis revealed that labile P and soluble reactive P (SRP) concentrations varied from 0.0006 mg L-1 to 0.084 mg L-1 (mean 0.0147 mg L-1) and from 0.0128 mg L-1 to 0.1677 mg L-1 (mean 0.0536 mg L-1), respectively. Coastal degradation had a substantial impact on increasing SRP and labile P concentrations, particularly at severely degraded sites. Although severely degraded wetlands appeared to be P sinks (negative P flux at these sites), we did also observe positive diffusive flux in October, indicating that coastal degradation may accelerate the diffusion and remobilization of sediment P into overlying water. The simulations of the DIFS model provided compelling proof of the high resupply capacity of sediment P at severely degraded sites, as supported by the increased R and k-1 values but decreased Tc values. Taken together, these results suggest coastal degradation reduces the sediment P pool, primarily attributed to the strong remobilization of P from the sediment to porewater and overlying water by enhancing the resupply capability and diffusion kinetics. This acceleration induces nutrient loss which adversely impacts the water quality of the surrounding ecosystem. To reduce the adverse effects of coastal degradation, it is essential to adopt a combination of conservation, restoration, and management efforts designed to mitigate the risk of internal P loading and release, and ultimately maintain a regional nutrient balance.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Fósforo/análisis , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Diálisis Renal , Monitoreo del Ambiente/métodos
3.
Sci Total Environ ; 944: 174011, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38880140

RESUMEN

The extensive conversion of coastal wetlands into agricultural and aquaculture areas has significant repercussions on soil nutrient balance. However, how coastal conversion specifically influences the dynamics and stoichiometry of topsoil carbon (C), nitrogen (N), and phosphorus (P) remains limited due to the considerable spatial variability and a lack of comprehensive field data. Here, we investigated the concentration and distribution of total C (TC), N (TN) and P (TP), along with their stoichiometric balance in four distinct coastal landscapes, including natural marshes and tidal flats, as well as converted agricultural croplands and ponds. The results revealed that converted croplands and ponds exhibited significantly higher concentrations of soil C, N and P, particularly in comparison to tidal flats. Furthermore, croplands and ponds have higher topsoil C stocks than tidal flats, but little difference or even lose stored C compared to marshes. Cropland soils showed considerably higher levels of available N (NH4+-N and NO3--N) and available P compared to those in natural marshes and tidal flats. The distribution of soil TC, TN, and TP demonstrated greater spatial heterogeneity in natural marshes and tidal flats, while the converted areas were more uniform and became hotspots for N and P accumulation. Coastal conversion altered soil C:N:P stoichiometry, with cropland soils exhibiting a lower N:P ratio (2.9 ± 1.1), indicating that long-term application of N and P fertilizers could decrease the N:P ratio, as P is more retained in the soil than N. Furthermore, it was observed that the dynamics of C, N and P, as well as their stoichiometry, are closely linked to soil physicochemical properties, especially soil organic matter and texture. These findings highlight that coastal conversion and associated management practices markedly affected soil C, N and P dynamics in a representative wetland area of the subtropical regions, leading to a reshaping of their stoichiometric balances, particularly in the topsoil layer.

4.
Sci Total Environ ; 898: 165559, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454858

RESUMEN

Accelerated marsh erosion caused by climate change and human activity may have important implications for nutrient cycling and availability. However, how erosion affects phosphorus (P) transformation and microbial function in subtropical coastal marshes remains largely unknown. Here we assessed soil P fractions, availability and the phoD-harboring bacterial community along a marsh erosion gradient (non-eroded, lightly eroded, and heavily eroded). We showed that marsh erosion caused a shift in P fractions, leading to a decrease in P availability and a reduction in concentrations of labile P, moderately labile P, and stable P by 20 %, 9 %, and 17 % respectively. The abundance and diversity of phoD phosphatase genes decreased dramatically along the erosion gradient and were lower at heavily eroded sites than at non-eroded sites. Marsh erosion reshaped phoD gene community composition, and Corallococcus, Amycolatopsis, and Phaeobacter were identified as the dominant phoD-harboring microbes. Notably, marsh erosion reduced the complexity and stability of the phoD-harboring bacterial network, and heavily eroded sites have fewer network edges and nodes than non-eroded sites. The dynamics of soil P fractions, availability, and phoD-harboring bacterial communities driven by marsh erosion are largely shaped by substrate availability and soil properties (e.g., nutrients, pH, electrical conductivity, and moisture). Additionally, strong linkages between P availability and the abundance and diversity of phosphatase genes following erosion, suggest that phosphatase drives P mineralization and dissolution, and erosion weakens the regulation of P transformation by reshaping the phoD phosphatase gene community. Our findings indicate that marsh erosion alters soil P fractions and phoD-harboring bacterial communities, which weakens microbial regulation of P transformation and availability, thereby significantly reducing soil P pools and availability. Our findings broaden understanding of the impacts of coastal erosion on nutrient balance and ecosystem function, offering valuable perspectives that could inform wetland restoration and coastal management strategies.

5.
Water Res ; 230: 119586, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638741

RESUMEN

The reclamation of wetlands and its subsequent conversion to aquaculture may alter regional nutrient (im)mobilization and cycling, although direct assessments of phosphorus (P) cycling and its budget balance following wetland conversion are currently scarce. Here, parallel field experiments were conducted to investigate and compare the availability and mobilization mechanisms of P from natural coastal wetlands and the adjacent converted aquaculture ponds based on high-resolution diffusive gradient in thin films (DGT) and dialysis (HR-Peeper) techniques and the DGT-induced fluxes in sediments (DIFS) model. The study found that the conversion of wetland to pond strongly reduced the sediment P pool by changing its forms and distribution. High-resolution data showed that concentrations of labile P and soluble reactive P across the sediment-water profiles were markedly enhanced by the converted aquaculture pond, although they exhibited large spatiotemporal heterogeneity. Moreover, the synchronous distribution of labile P, iron (Fe) and sulfur (S) across profiles in coastal wetlands indicated that the dissolution of Fe (III) oxyhydroxide-phosphate complexes coupled with sulfate reduction were the main mechanisms regulating sediment P mobilization in coastal areas. However, the converted aquaculture pond weakened or even reversed this dependence by decoupling the Fe-S-P reactions by changing the sediment structure and nutrient balance. Substantial increases in labile P, Fe and S fluxes in the pond suggested the conversion of wetland to aquaculture facilitated the internal release of P, Fe and S from sediment into water. The high resupply parameter (R) and desorption rate (k-1) combined with low response time (Tc) in the pond, as fitted by DIFS model, indicated the strong resupply capacity and fast kinetic exchange of sediment P across the sediment-water interface, which is consistent with the high P diffusion fluxes recorded in the pond. It was concluded that converted aquaculture ponds act as an important source of P release in coastal areas, potentially exacerbating water quality degradation and eutrophication. Specific initiatives and actions are therefore urgently needed to alleviate the internal P-loading during aquaculture.


Asunto(s)
Estanques , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Humedales , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Diálisis Renal , Fósforo/análisis , Acuicultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA