Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pattern Recognit ; 50: 155-177, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27275022

RESUMEN

Conventional, soft-partition clustering approaches, such as fuzzy c-means (FCM), maximum entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually incompetent in those situations where the data are quite insufficient or much polluted by underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II knowledge-transfer-oriented c-means (TI-KT-CM and TII-KT-CM), are subsequently presented, respectively. The primary contributions of our work are four-fold: (1) The delicate QWGSD-FC model inherits the most merits of FCM, MEC and FC-QR. With the weight factors in the form of quadratic memberships, similar to FCM, it can more effectively calculate the total intra-cluster deviation than the linear form recruited in MEC and FC-QR. Meanwhile, via Gini-Simpson diversity index, like Shannon entropy in MEC, and equivalent to the quadratic regularization in FC-QR, QWGSD-FC is prone to achieving the unbiased probability assignments, (2) owing to the reference knowledge from the source domain, both TI-KT-CM and TII-KT-CM demonstrate high clustering effectiveness as well as strong parameter robustness in the target domain, (3) TI-KT-CM refers merely to the historical cluster centroids, whereas TII-KT-CM simultaneously uses the historical cluster centroids and their associated fuzzy memberships as the reference. This indicates that TII-KT-CM features more comprehensive knowledge learning capability than TI-KT-CM and TII-KT-CM consequently exhibits more perfect cross-domain clustering performance and (4) neither the historical cluster centroids nor the historical cluster centroid based fuzzy memberships involved in TI-KT-CM or TII-KT-CM can be inversely mapped into the raw data. This means that both TI-KT-CM and TII-KT-CM can work without disclosing the original data in the source domain, i.e. they are of good privacy protection for the source domain. In addition, the convergence analyses regarding both TI-KT-CM and TII-KT-CM are conducted in our research. The experimental studies thoroughly evaluated and demonstrated our contributions on both synthetic and real-life data scenarios.

2.
ScientificWorldJournal ; 2014: 536434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24790571

RESUMEN

In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM) for the class imbalance problem (called FSVM-CIP) is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.


Asunto(s)
Conjuntos de Datos como Asunto , Modelos Teóricos , Máquina de Vectores de Soporte , Algoritmos , Bases de Datos Factuales , Humanos
3.
Front Psychol ; 13: 899983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619785

RESUMEN

Electroencephalogram (EEG) signals are not easily camouflaged, portable, and noninvasive. It is widely used in emotion recognition. However, due to the existence of individual differences, there will be certain differences in the data distribution of EEG signals in the same emotional state of different subjects. To obtain a model that performs well in classifying new subjects, traditional emotion recognition approaches need to collect a large number of labeled data of new subjects, which is often unrealistic. In this study, a transfer discriminative dictionary pair learning (TDDPL) approach is proposed for across-subject EEG emotion classification. The TDDPL approach projects data from different subjects into the domain-invariant subspace, and builds a transfer dictionary pair learning based on the maximum mean discrepancy (MMD) strategy. In the subspace, TDDPL learns shared synthesis and analysis dictionaries to build a bridge of discriminative knowledge from source domain (SD) to target domain (TD). By minimizing the reconstruction error and the inter-class separation term for each sub-dictionary, the learned synthesis dictionary is discriminative and the learned low-rank coding is sparse. Finally, a discriminative classifier in the TD is constructed on the classifier parameter, analysis dictionary and projection matrix, without the calculation of coding coefficients. The effectiveness of the TDDPL approach is verified on SEED and SEED IV datasets.

4.
Comput Math Methods Med ; 2022: 3469979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35469221

RESUMEN

In the past, the possibilistic C-means clustering algorithm (PCM) has proven its superiority on various medical datasets by overcoming the unstable clustering effect caused by both the hard division of traditional hard clustering models and the susceptibility of fuzzy C-means clustering algorithm (FCM) to noise. However, with the deep integration and development of the Internet of Things (IoT) as well as big data with the medical field, the width and height of medical datasets are growing bigger and bigger. In the face of high-dimensional and giant complex datasets, it is challenging for the PCM algorithm based on machine learning to extract valuable features from thousands of dimensions, which increases the computational complexity and useless time consumption and makes it difficult to avoid the quality problem of clustering. To this end, this paper proposes a deep possibilistic C-mean clustering algorithm (DPCM) that combines the traditional PCM algorithm with a special deep network called autoencoder. Taking advantage of the fact that the autoencoder can minimize the reconstruction loss and the PCM uses soft affiliation to facilitate gradient descent, DPCM allows deep neural networks and PCM's clustering centers to be optimized at the same time, so that it effectively improves the clustering efficiency and accuracy. Experiments on medical datasets with various dimensions demonstrate that this method has a better effect than traditional clustering methods, besides being able to overcome the interference of noise better.


Asunto(s)
Algoritmos , Lógica Difusa , Análisis por Conglomerados , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
5.
Front Aging Neurosci ; 14: 848511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250551

RESUMEN

Affective computing is concerned with simulating people's psychological cognitive processes, of which emotion classification is an important part. Electroencephalogram (EEG), as an electrophysiological indicator capable of recording brain activity, is portable and non-invasive. It has emerged as an essential measurement method in the study of emotion classification. EEG signals are typically split into different frequency bands based on rhythmic characteristics. Most of machine learning methods combine multiple frequency band features into a single feature vector. This strategy is incapable of utilizing the complementary and consistent information of each frequency band effectively. It does not always achieve the satisfactory results. To obtain the sparse and consistent representation of the multi-frequency band EEG signals for emotion classification, this paper propose a multi-frequent band collaborative classification method based on optimal projection and shared dictionary learning (called MBCC). The joint learning model of dictionary learning and subspace learning is introduced in this method. MBCC maps multi-frequent band data into the subspaces of the same dimension using projection matrices, which are composed of a common shared component and a band-specific component. This projection method can not only make full use of the relevant information across multiple frequency bands, but it can also maintain consistency across each frequency band. Based on dictionary learning, the subspace learns the correlation between frequency bands using Fisher criterion and principal component analysis (PCA)-like regularization term, resulting in a strong discriminative model. The objective function of MBCC is solved by an iterative optimization algorithm. Experiment results on public datasets SEED and DEAP verify the effectiveness of the proposed method.

6.
Front Mol Biosci ; 9: 1009099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504714

RESUMEN

The accurate prediction of potential associations between microRNAs (miRNAs) and small molecule (SM) drugs can enhance our knowledge of how SM cures endogenous miRNA-related diseases. Given that traditional methods for predicting SM-miRNA associations are time-consuming and arduous, a number of computational models have been proposed to anticipate the potential SM-miRNA associations. However, several of these strategies failed to eliminate noise from the known SM-miRNA association information or failed to prioritize the most significant known SM-miRNA associations. Therefore, we proposed a model of Graph Convolutional Network with Layer Attention mechanism for SM-MiRNA Association prediction (GCNLASMMA). Firstly, we obtained the new SM-miRNA associations by matrix decomposition. The new SM-miRNA associations, as well as the integrated SM similarity and miRNA similarity were subsequently incorporated into a heterogeneous network. Finally, a graph convolutional network with an attention mechanism was used to compute the reconstructed SM-miRNA association matrix. Furthermore, four types of cross validations and two types of case studies were performed to assess the performance of GCNLASMMA. In cross validation, global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation achieved excellent performance. Numerous hypothesized associations in case studies were confirmed by experimental literatures. All of these results confirmed that GCNLASMMA is a trustworthy association inference method.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32078557

RESUMEN

Conventional classification models for epileptic EEG signal recognition need sufficient labeled samples as training dataset. In addition, when training and testing EEG signal samples are collected from different distributions, for example, due to differences in patient groups or acquisition devices, such methods generally cannot perform well. In this paper, a cross-domain classification model with knowledge utilization maximization called CDC-KUM is presented, which takes advantage of the data global structure provided by the labeled samples in the related domain and unlabeled samples in the current domain. Through mapping the data into kernel space, the pairwise constraint regularization term is combined together the predictive differences of the labeled data in the source domain. Meanwhile, the soft clustering regularization term using quadratic weights and Gini-Simpson diversity is applied to exploit the distribution information of unlabeled data in the target domain. Experimental results show that CDC-KUM model outperformed several traditional non-transfer and transfer classification methods for recognition of epileptic EEG signals.


Asunto(s)
Electroencefalografía/clasificación , Epilepsia/diagnóstico , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Algoritmos , Humanos
8.
Front Neurosci ; 15: 829040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095411

RESUMEN

Magnetic resonance imaging (MRI) can have a good diagnostic function for important organs and parts of the body. MRI technology has become a common and important disease detection technology. At the same time, medical imaging data is increasing at an explosive rate. Retrieving similar medical images from a huge database is of great significance to doctors' auxiliary diagnosis and treatment. In this paper, combining the advantages of sparse representation and metric learning, a sparse representation-based discriminative metric learning (SRDML) approach is proposed for medical image retrieval of brain MRI. The SRDML approach uses a sparse representation framework to learn robust feature representation of brain MRI, and uses metric learning to project new features into the metric space with matching discrimination. In such a metric space, the optimal similarity measure is obtained by using the local constraints of atoms and the pairwise constraints of coding coefficients, so that the distance between similar images is less than the given threshold, and the distance between dissimilar images is greater than another given threshold. The experiments are designed and tested on the brain MRI dataset created by Chang. Experimental results show that the SRDML approach can obtain satisfactory retrieval performance and achieve accurate brain MRI image retrieval.

9.
Front Psychol ; 12: 721266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393958

RESUMEN

The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.

10.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1679-1687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32750882

RESUMEN

Classification of electroencephalogram (EEG) signal data plays a vital role in epilepsy detection. Recently sparse representation-based classification (SRC) methods have achieved the good performance in EEG signal automatic detection, by which the EEG signals are sparsely represented using a few active coefficients in the dictionary and classified according to the reconstruction criteria. However, most of SRC learn a linear dictionary for encoding, and cannot extract enough information and nonlinear relationship of data for classification. To solve this problem, a hierarchical discriminative sparse representation classification model (called HD-SRC) for EEG signal detection is proposed. Based on the framework of neural network, HD-SRC learns the hierarchical nonlinear transformation and maps the signal data into the nonlinear transformed space. Through incorporating this idea into label consistent K singular value decomposition (LC-KSVD) at the top layer of neural network, HD-SRC seeks discriminative representation together with dictionary, while minimizing errors of classification, reconstruction and discriminative sparse-code for pattern classification. By learning the hierarchical feature mapping and discriminative dictionary simultaneously, more discriminative information of data can be exploited. In the experiment the proposed model is evaluated on the Bonn EEG database, and the results show it obtains satisfactory classification performance in multiple EEG signal detection tasks.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Algoritmos , Encéfalo/fisiología , Aprendizaje Profundo , Epilepsia/fisiopatología , Humanos
11.
Front Neurosci ; 15: 679847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122001

RESUMEN

Brain tumor image classification is an important part of medical image processing. It assists doctors to make accurate diagnosis and treatment plans. Magnetic resonance (MR) imaging is one of the main imaging tools to study brain tissue. In this article, we propose a brain tumor MR image classification method using convolutional dictionary learning with local constraint (CDLLC). Our method integrates the multi-layer dictionary learning into a convolutional neural network (CNN) structure to explore the discriminative information. Encoding a vector on a dictionary can be considered as multiple projections into new spaces, and the obtained coding vector is sparse. Meanwhile, in order to preserve the geometric structure of data and utilize the supervised information, we construct the local constraint of atoms through a supervised k-nearest neighbor graph, so that the discrimination of the obtained dictionary is strong. To solve the proposed problem, an efficient iterative optimization scheme is designed. In the experiment, two clinically relevant multi-class classification tasks on the Cheng and REMBRANDT datasets are designed. The evaluation results demonstrate that our method is effective for brain tumor MR image classification, and it could outperform other comparisons.

12.
Front Neurosci ; 15: 662674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841095

RESUMEN

Background: The brain magnetic resonance imaging (MRI) image segmentation method mainly refers to the division of brain tissue, which can be divided into tissue parts such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The segmentation results can provide a basis for medical image registration, 3D reconstruction, and visualization. Generally, MRI images have defects such as partial volume effects, uneven grayscale, and noise. Therefore, in practical applications, the segmentation of brain MRI images has difficulty obtaining high accuracy. Materials and Methods: The fuzzy clustering algorithm establishes the expression of the uncertainty of the sample category and can describe the ambiguity brought by the partial volume effect to the brain MRI image, so it is very suitable for brain MRI image segmentation (B-MRI-IS). The classic fuzzy c-means (FCM) algorithm is extremely sensitive to noise and offset fields. If the algorithm is used directly to segment the brain MRI image, the ideal segmentation result cannot be obtained. Accordingly, considering the defects of MRI medical images, this study uses an improved multiview FCM clustering algorithm (IMV-FCM) to improve the algorithm's segmentation accuracy of brain images. IMV-FCM uses a view weight adaptive learning mechanism so that each view obtains the optimal weight according to its cluster contribution. The final division result is obtained through the view ensemble method. Under the view weight adaptive learning mechanism, the coordination between various views is more flexible, and each view can be adaptively learned to achieve better clustering effects. Results: The segmentation results of a large number of brain MRI images show that IMV-FCM has better segmentation performance and can accurately segment brain tissue. Compared with several related clustering algorithms, the IMV-FCM algorithm has better adaptability and better clustering performance.

13.
Front Neurosci ; 14: 837, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013284

RESUMEN

Epilepsy is an abnormal function disease of movement, consciousness, and nerve caused by abnormal discharge of brain neurons in the brain. EEG is currently a very important tool in the process of epilepsy research. In this paper, a novel noise-insensitive Takagi-Sugeno-Kang (TSK) fuzzy system based on interclass competitive learning is proposed for EEG signal recognition. First, a possibilistic clustering in Bayesian framework with interclass competitive learning called PCB-ICL is presented to determine antecedent parameters of fuzzy rules. Inherited by the possibilistic c-means clustering, PCB-ICL is noise insensitive. PCB-ICL learns cluster centers of different classes in a competitive relationship. The obtained clustering centers are attracted by the samples of the same class and also excluded by the samples of other classes and pushed away from the heterogeneous data. PCB-ICL uses the Metropolis-Hastings method to obtain the optimal clustering results in an alternating iterative strategy. Thus, the learned antecedent parameters have high interpretability. To further promote the noise insensitivity of rules, the asymmetric expectile term and Ho-Kashyap procedure are adopted to learn the consequent parameters of rules. Based on the above ideas, a TSK fuzzy system is proposed and is called PCB-ICL-TSK. Comprehensive experiments on real-world EEG data reveal that the proposed fuzzy system achieves the robust and effective performance for EEG signal recognition.

14.
Front Neurosci ; 14: 586149, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132835

RESUMEN

Metric learning is a class of efficient algorithms for EEG signal classification problem. Usually, metric learning method deals with EEG signals in the single view space. To exploit the diversity and complementariness of different feature representations, a new auto-weighted multi-view discriminative metric learning method with Fisher discriminative and global structure constraints for epilepsy EEG signal classification called AMDML is proposed to promote the performance of EEG signal classification. On the one hand, AMDML exploits the multiple features of different views in the scheme of the multi-view feature representation. On the other hand, considering both the Fisher discriminative constraint and global structure constraint, AMDML learns the discriminative metric space, in which the intraclass EEG signals are compact and the interclass EEG signals are separable as much as possible. For better adjusting the weights of constraints and views, instead of manually adjusting, a closed form solution is proposed, which obtain the best values when achieving the optimal model. Experimental results on Bonn EEG dataset show AMDML achieves the satisfactory results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA