Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 554(7692): 317-322, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29446381

RESUMEN

The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Habénula/efectos de los fármacos , Habénula/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Afecto/efectos de los fármacos , Anhedonia/efectos de los fármacos , Animales , Antidepresivos/administración & dosificación , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Modelos Animales de Enfermedad , Habénula/patología , Habénula/efectos de la radiación , Ketamina/administración & dosificación , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa , Ritmo Teta/efectos de los fármacos
2.
Nature ; 554(7692): 323-327, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29446379

RESUMEN

Enhanced bursting activity of neurons in the lateral habenula (LHb) is essential in driving depression-like behaviours, but the cause of this increase has been unknown. Here, using a high-throughput quantitative proteomic screen, we show that an astroglial potassium channel (Kir4.1) is upregulated in the LHb in rat models of depression. Kir4.1 in the LHb shows a distinct pattern of expression on astrocytic membrane processes that wrap tightly around the neuronal soma. Electrophysiology and modelling data show that the level of Kir4.1 on astrocytes tightly regulates the degree of membrane hyperpolarization and the amount of bursting activity of LHb neurons. Astrocyte-specific gain and loss of Kir4.1 in the LHb bidirectionally regulates neuronal bursting and depression-like symptoms. Together, these results show that a glia-neuron interaction at the perisomatic space of LHb is involved in setting the neuronal firing mode in models of a major psychiatric disease. Kir4.1 in the LHb might have potential as a target for treating clinical depression.


Asunto(s)
Astrocitos/metabolismo , Depresión/metabolismo , Habénula/metabolismo , Neuronas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/patología , Habénula/efectos de los fármacos , Habénula/patología , Masculino , Terapia Molecular Dirigida , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Recompensa
3.
Neuron ; 110(3): 516-531.e6, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34793692

RESUMEN

Social competition plays a pivotal role in determining individuals' social status. While the dorsomedial prefrontal cortex (dmPFC) is essential in regulating social competition, it remains unclear how information is processed within its local networks. Here, by applying optogenetic and chemogenetic manipulations in a dominance tube test, we reveal that, in accordance with pyramidal (PYR) neuron activation, excitation of the vasoactive intestinal polypeptide (VIP) or inhibition of the parvalbumin (PV) interneurons induces winning. The winning behavior is associated with sequential calcium activities initiated by VIP and followed by PYR and PV neurons. Using miniature two-photon microscopic (MTPM) and optrode recordings in awake mice, we show that VIP stimulation directly leads to a two-phased activity pattern of both PYR and PV neurons-rapid suppression followed by activation. The delayed activation of PV implies an embedded feedback tuning. This disinhibitory VIP-PV-PYR motif forms the core of a dmPFC microcircuit to control social competition.


Asunto(s)
Interneuronas , Parvalbúminas , Animales , Interneuronas/fisiología , Ratones , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Péptido Intestinal Vasoactivo/metabolismo
4.
Front Neurosci ; 13: 1039, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680800

RESUMEN

The visual system is organized in a parallel and hierarchical architecture. However, the plasticity in hierarchical neural networks is controversial across different response features and at different levels. In this study, we recorded areas 17 and 21a, earlier and intermediate stages of the visual cortex in the cat, respectively, by single-unit recording and intrinsic-signal optical imaging. We found that ocular dominance (OD) plasticity evoked by monocular deprivation (MD) was stronger in area 21a than in area 17 in the critical period (CP), and this plasticity became weaker but still persisted in area 21a while it disappeared in area 17 beyond the CP. These results suggest a diversified functional plasticity along the visual information processing pathways in a hierarchical neural network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA