Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167456

RESUMEN

BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.

2.
Circulation ; 150(4): 302-316, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38695173

RESUMEN

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.


Asunto(s)
Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Ubiquitina Tiolesterasa , Animales , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/metabolismo , Humanos , Ratones , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Masculino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/enzimología , Ratas Sprague-Dawley , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Remodelación Vascular , Células Cultivadas , Proliferación Celular , Ratones Endogámicos C57BL , Indoles , Oximas
3.
Respir Res ; 25(1): 235, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844967

RESUMEN

BACKGROUND: Abnormal remodeling of distal pulmonary arteries in patients with pulmonary arterial hypertension (PAH) leads to progressively increased pulmonary vascular resistance, followed by right ventricular hypertrophy and failure. Despite considerable advancements in PAH treatment prognosis remains poor. We aim to evaluate the potential for using the cytokine resistin as a genetic and biological marker for disease severity and survival in a large cohort of patients with PAH. METHODS: Biospecimens, clinical, and genetic data for 1121 adults with PAH, including 808 with idiopathic PAH (IPAH) and 313 with scleroderma-associated PAH (SSc-PAH), were obtained from a national repository. Serum resistin levels were measured by ELISA, and associations between resistin levels, clinical variables, and single nucleotide polymorphism genotypes were examined with multivariable regression models. Machine-learning (ML) algorithms were applied to develop and compare risk models for mortality prediction. RESULTS: Resistin levels were significantly higher in all PAH samples and PAH subtype (IPAH and SSc-PAH) samples than in controls (P < .0001) and had significant discriminative abilities (AUCs of 0.84, 0.82, and 0.91, respectively; P < .001). High resistin levels (above 4.54 ng/mL) in PAH patients were associated with older age (P = .001), shorter 6-min walk distance (P = .001), and reduced cardiac performance (cardiac index, P = .016). Interestingly, mutant carriers of either rs3219175 or rs3745367 had higher resistin levels (adjusted P = .0001). High resistin levels in PAH patients were also associated with increased risk of death (hazard ratio: 2.6; 95% CI: 1.27-5.33; P < .0087). Comparisons of ML-derived survival models confirmed satisfactory prognostic value of the random forest model (AUC = 0.70, 95% CI: 0.62-0.79) for PAH. CONCLUSIONS: This work establishes the importance of resistin in the pathobiology of human PAH. In line with its function in rodent models, serum resistin represents a novel biomarker for PAH prognostication and may indicate a new therapeutic avenue. ML-derived survival models highlighted the importance of including resistin levels to improve performance. Future studies are needed to develop multi-marker assays that improve noninvasive risk stratification.


Asunto(s)
Resistina , Índice de Severidad de la Enfermedad , Humanos , Masculino , Femenino , Resistina/sangre , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Valor Predictivo de las Pruebas , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/mortalidad , Anciano , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Tasa de Supervivencia/tendencias , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/mortalidad , Hipertensión Pulmonar/genética
4.
Am J Respir Crit Care Med ; 207(8): 1055-1069, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913491

RESUMEN

Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Masculino , Ratas , Femenino , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón , Arteria Pulmonar , Hipoxia/complicaciones , Estrógenos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/complicaciones , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/genética
5.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984729

RESUMEN

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Asunto(s)
Cognición/fisiología , Estimulación Encefálica Profunda/métodos , Glucosilceramidasa/genética , Heterocigoto , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pruebas Neuropsicológicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología
6.
Am J Respir Crit Care Med ; 205(12): 1449-1460, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35394406

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. Objectives: To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. Methods: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. Measurements and Main Results: From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Conclusions: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Proteínas Sanguíneas/genética , Hipertensión Pulmonar Primaria Familiar , Humanos , Netrinas , Patología Molecular , Proteoma , Trombospondinas
7.
Eur Respir J ; 59(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34588193

RESUMEN

BACKGROUND: Inflammation and dysregulated immunity are important in the development of pulmonary arterial hypertension (PAH). Compelling preclinical data supports the therapeutic blockade of interleukin-6 (IL-6) signalling. METHODS: We conducted a phase 2 open-label study of intravenous tocilizumab (8 mg·kg-1) over 6 months in patients with group 1 PAH. Co-primary end-points were safety, defined by incidence and severity of adverse events, and change in pulmonary vascular resistance. Separately, a mendelian randomisation study was undertaken on 11 744 individuals with European ancestry including 2085 patients with idiopathic/heritable disease for the IL-6 receptor (IL6R) variant (rs7529229), known to associate with circulating IL-6R levels. RESULTS: We recruited 29 patients (male/female 10/19; mean±sd age 54.9±11.4 years). Of these, 19 had heritable/idiopathic PAH and 10 had connective tissue disease-associated PAH. Six were withdrawn prior to drug administration; 23 patients received at least one dose of tocilizumab. Tocilizumab was discontinued in four patients owing to serious adverse events. There were no deaths. Despite evidence of target engagement in plasma IL-6 and C-reactive protein levels, both intention-to-treat and modified intention-to-treat analyses demonstrated no change in pulmonary vascular resistance. Inflammatory markers did not predict treatment response. Mendelian randomisation did not support an effect of the lead IL6R variant on risk of PAH (OR 0.99, p=0.88). CONCLUSION: Adverse events were consistent with the known safety profile of tocilizumab. Tocilizumab did not show any consistent treatment effect.


Asunto(s)
Investigación Biomédica , Hipertensión Arterial Pulmonar , Adulto , Anciano , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Interleucina-6 , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
8.
J Pediatr ; 241: 68-76.e3, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687693

RESUMEN

OBJECTIVE: To evaluate the performance of pulmonary hypertension (PH) biomarkers in children with Down syndrome, an independent risk factor for PH, in whom biomarker performance may differ compared with other populations. STUDY DESIGN: Serum endostatin, interleukin (IL)-1 receptor 1 (ST2), galectin-3, N-terminal pro hormone B-natriuretic peptide (NT-proBNP), IL-6, and hepatoma-derived growth factor (HDGF) were measured in subjects with Down syndrome and PH (n = 29), subjects with Down syndrome and resolved PH (n = 13), subjects with Down syndrome without PH (n = 49), and subjects without Down syndrome with World Symposium on Pulmonary Hypertension group I pulmonary arterial hypertension (no Down syndrome PH group; n = 173). Each biomarker was assessed to discriminate PH in Down syndrome. A classification tree was created to distinguish PH from resolved PH and no PH in children with Down syndrome. RESULTS: Endostatin, galectin-3, HDGF, and ST2 were elevated in subjects with Down syndrome regardless of PH status. Not all markers differed between subjects with Down syndrome and PH and subjects with Down syndrome and resolved PH. NT-proBNP and IL-6 levels were similar in the Down syndrome with PH group and the no Down syndrome PH group. A classification tree identified NT-proBNP and galectin-3 as the best markers for sequentially distinguishing PH, resolved PH, and no PH in subjects with Down syndrome. CONCLUSIONS: Proteomic markers are used to improve the diagnosis and prognosis of PH but, as demonstrated here, can be altered in genetically unique populations such as individuals with Down syndrome. This further suggests that clinical biomarkers should be evaluated in unique groups with the development of population-specific nomograms.


Asunto(s)
Síndrome de Down/complicaciones , Hipertensión Pulmonar/sangre , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Endostatinas/sangre , Femenino , Galectina 3/sangre , Humanos , Hipertensión Pulmonar/complicaciones , Péptidos y Proteínas de Señalización Intercelular/sangre , Interleucina-6/sangre , Masculino , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Receptores de Interleucina-1/sangre
9.
Circulation ; 141(24): 1986-2000, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32192357

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy. Hereditary cases are associated with germline mutations in BMPR2 and 16 other genes; however, these mutations occur in <25% of patients with idiopathic PAH and are rare in PAH associated with connective tissue diseases. Preclinical studies suggest epigenetic dysregulation, including altered DNA methylation, promotes PAH. Somatic mutations of Tet-methylcytosine-dioxygenase-2 (TET2), a key enzyme in DNA demethylation, occur in cardiovascular disease and are associated with clonal hematopoiesis, inflammation, and adverse vascular remodeling. The role of TET2 in PAH is unknown. METHODS: To test for a role of TET2, we used a cohort of 2572 cases from the PAH Biobank. Within this cohort, gene-specific rare variant association tests were performed using 1832 unrelated European patients with PAH and 7509 non-Finnish European subjects from the Genome Aggregation Database (gnomAD) as control subjects. In an independent cohort of 140 patients, we quantified TET2 expression in peripheral blood mononuclear cells. To assess causality, we investigated hemodynamic and histological evidence of PAH in hematopoietic Tet2-knockout mice. RESULTS: We observed an increased burden of rare, predicted deleterious germline variants in TET2 in PAH patients of European ancestry (9/1832) compared with control subjects (6/7509; relative risk=6; P=0.00067). Assessing the whole cohort, 0.39% of patients (10/2572) had 12 TET2 mutations (75% predicted germline and 25% somatic). These patients had no mutations in other PAH-related genes. Patients with TET2 mutations were older (71±7 years versus 48±19 years; P<0.0001), were more unresponsive to vasodilator challenge (0/7 versus 140/1055 [13.2%]), had lower pulmonary vascular resistance (5.2±3.1 versus 10.5±7.0 Wood units; P=0.02), and had increased inflammation (including elevation of interleukin-1ß). Circulating TET2 expression did not correlate with age and was decreased in >86% of PAH patients. Tet2-knockout mice spontaneously developed PAH, adverse pulmonary vascular remodeling, and inflammation, with elevated levels of cytokines, including interleukin-1ß. Long-term therapy with an antibody targeting interleukin-1ß blockade resulted in regression of PAH. CONCLUSIONS: PAH is the first human disease related to potential TET2 germline mutations. Inherited and acquired abnormalities of TET2 occur in 0.39% of PAH cases. Decreased TET2 expression is ubiquitous and has potential as a PAH biomarker.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Epigénesis Genética/fisiología , Mutación/fisiología , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Dioxigenasas , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad
10.
Am J Respir Crit Care Med ; 202(4): 586-594, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32352834

RESUMEN

Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/sangre , Hipertensión Pulmonar Primaria Familiar/genética , ARN/sangre , Adulto , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad
11.
Am J Respir Crit Care Med ; 201(11): 1407-1415, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31916850

RESUMEN

Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH).Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH.Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis.Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P = 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P = 0.034).Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/mortalidad , Población Blanca/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia , Estados Unidos/epidemiología
12.
BMC Med ; 18(1): 268, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33019943

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease that results from cardio-pulmonary dysfunction with the pathology largely unknown. Insulin-like growth factor binding protein 2 (IGFBP2) is an important member of the insulin-like growth factor family, with evidence suggesting elevation in PAH patients. We investigated the diagnostic and prognostic value of serum IGFBP2 in PAH to determine if it could discriminate PAH from healthy controls and if it was associated with disease severity and survival. METHODS: Serum IGFBP2 levels, as well as IGF1/2 levels, were measured in two independent PAH cohorts, the Johns Hopkins Pulmonary Hypertension program (JHPH, N = 127), NHLBI PAHBiobank (PAHB, N = 203), and a healthy control cohort (N = 128). The protein levels in lung tissues were determined by western blot. The IGFBP2 mRNA expression levels in pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) were assessed by RNA-seq, secreted protein levels by ELISA. Association of biomarkers with clinical variables was evaluated using adjusted linear or logistic regression and Kaplan-Meier analysis. RESULTS: In both PAH cohorts, serum IGFBP2 levels were significantly elevated (p < 0.0001) compared to controls and discriminated PAH from controls with an AUC of 0.76 (p < 0.0001). A higher IGFBP2 level was associated with a shorter 6-min walk distance (6MWD) in both cohorts after adjustment for age and sex (coefficient - 50.235 and - 57.336 respectively). Cox multivariable analysis demonstrated that higher serum IGFBP2 was a significant independent predictor of mortality in PAHB cohort only (HR, 3.92; 95% CI, 1.37-11.21). IGF1 levels were significantly increased only in the PAHB cohort; however, neither IGF1 nor IGF2 had equivalent levels of associations with clinical variables compared with IGFBP2. Western blotting shown that IGFBP2 protein was significantly increased in the PAH vs control lung tissues. Finally, IGFBP2 mRNA expression and secreted protein levels were significantly higher in PASMC than in PAEC. CONCLUSIONS: IGFBP2 protein expression was increased in the PAH lung, and secreted by PASMC. Elevated circulating IGFBP2 was associated with PAH severity and mortality and is a potentially valuable prognostic marker in PAH.


Asunto(s)
Biomarcadores/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Hipertensión Arterial Pulmonar/sangre , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Persona de Mediana Edad , Pronóstico , Hipertensión Arterial Pulmonar/mortalidad , Análisis de Supervivencia
13.
Eur Respir J ; 55(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029443

RESUMEN

The pro-inflammatory cytokine interleukin (IL)-6 has been associated with outcomes in small pulmonary arterial hypertension (PAH) cohorts composed largely of patients with severe idiopathic PAH (IPAH). It is unclear whether IL-6 is a marker of critical illness or a mechanistic biomarker of pulmonary vascular remodelling. We hypothesised that IL-6 is produced by pulmonary vascular cells and sought to explore IL-6 associations with phenotypes and outcomes across diverse subtypes in a large PAH cohort.IL-6 protein and gene expression levels were measured in cultured pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) from PAH patients and healthy controls. Serum IL-6 was measured in 2017 well-characterised PAH subjects representing each PAH subgroup. Relationships between IL-6 levels, clinical variables, and mortality were analysed using regression models.Significantly higher IL-6 protein and gene expression levels were produced by PASMCs than by PAECs in PAH (p<0.001), while there was no difference in IL-6 between cell types in controls. Serum IL-6 was highest in PAH related to portal hypertension and connective tissue diseases (CTD-PAH). In multivariable modelling, serum IL-6 was associated with survival in the overall cohort (hazard ratio 1.22, 95% CI 1.08-1.38; p<0.01) and in IPAH, but not in CTD-PAH. IL-6 remained associated with survival in low-risk subgroups of subjects with mild disease.IL-6 is released from PASMCs, and circulating IL-6 is associated with specific clinical phenotypes and outcomes in various PAH subgroups, including subjects with less severe disease. IL-6 is a mechanistic biomarker, and thus a potential therapeutic target, in certain PAH subgroups.


Asunto(s)
Interleucina-6/genética , Hipertensión Arterial Pulmonar/genética , Células Endoteliales , Humanos , Miocitos del Músculo Liso , Fenotipo , Arteria Pulmonar
14.
Eur Respir J ; 55(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744833

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare disease that leads to premature death from right heart failure. It is strongly associated with elevated red cell distribution width (RDW), a correlate of several iron status biomarkers. High RDW values can signal early-stage iron deficiency or iron deficiency anaemia. This study investigated whether elevated RDW is causally associated with PAH.A two-sample Mendelian randomisation (MR) approach was applied to investigate whether genetic predisposition to higher levels of RDW increases the odds of developing PAH. Primary and secondary MR analyses were performed using all available genome-wide significant RDW variants (n=179) and five genome-wide significant RDW variants that act via systemic iron status, respectively.We confirmed the observed association between RDW and PAH (OR 1.90, 95% CI 1.80-2.01) in a multicentre case-control study (cases n=642, disease controls n=15 889). The primary MR analysis was adequately powered to detect a causal effect (odds ratio) between 1.25 and 1.52 or greater based on estimates reported in the RDW genome-wide association study or from our own data. There was no evidence for a causal association between RDW and PAH in either the primary (ORcausal 1.07, 95% CI 0.92-1.24) or the secondary (ORcausal 1.09, 95% CI 0.77-1.54) MR analysis.The results suggest that at least some of the observed association of RDW with PAH is secondary to disease progression. Results of iron therapeutic trials in PAH should be interpreted with caution, as any improvements observed may not be mechanistically linked to the development of PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Estudios de Casos y Controles , Índices de Eritrocitos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión Pulmonar/genética
15.
J Pediatr ; 223: 164-169.e1, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32711743

RESUMEN

OBJECTIVE: To assess whether circulating interleukin-6 (IL-6) is associated with measures of disease severity and clinical worsening in pediatric pulmonary arterial hypertension (PAH). STUDY DESIGN: IL-6 was measured by enzyme-linked immunosorbent assay in serum samples from a cross-sectional cohort from the National Heart, Lung, and Blood Institute Pulmonary Arterial Hypertension Biobank (n = 175) and a longitudinal cohort from Children's Hospital Colorado (CHC) (n = 61). Associations between IL-6, disease severity, and outcomes were studied with regression and Kaplan-Meier analysis. RESULTS: In analyses adjusted for age and sex, each log-unit greater IL-6 was significantly associated in the Pulmonary Arterial Hypertension Biobank cohort with greater pulmonary vascular resistance indices, lower odds of having idiopathic PAH or treatment with prostacyclin, and greater odds of having PAH associated with a repaired congenital shunt. In the CHC cohort, each log-unit greater IL-6 was significantly associated with greater mean pulmonary arterial pressure over time. Kaplan-Meier analysis in the CHC cohort revealed that IL-6 was significantly associated with clinical worsening (a composite score of mortality, transplant, or palliative surgery) (P = .037). CONCLUSIONS: IL-6 was significantly associated with worse hemodynamics at baseline and over time and may be associated with clinical worsening. IL-6 may provide a less-invasive method for disease monitoring and prognosis in pediatric PAH as well as a potential therapeutic target.


Asunto(s)
Interleucina-6/sangre , Hipertensión Arterial Pulmonar/sangre , Adolescente , Biomarcadores/sangre , Niño , Preescolar , Estudios Transversales , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Masculino , Pronóstico , Presión Esfenoidal Pulmonar/fisiología
16.
Pediatr Res ; 88(6): 850-856, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32927467

RESUMEN

BACKGROUND: Insulin-like growth factors (IGFs), and their binding proteins (IGFBPs), play a significant role in cardiovascular function and may influence the pathobiology of PAH. We determined the diagnostic and prognostic value of IGF1 and IGFBP2 in pediatric PAH. METHODS: Serum was analyzed by ELISA for IGF1 and IGFBP2 in pediatric PAH subjects from the NHLBI PAH Biobank (PAHB, n = 175) and a cohort of asthmatic subjects (n = 46, age 0-21 years) as a chronic pediatric pulmonary disease control. Biomarkers were analyzed with demographic and clinical variables for PAH severity. RESULTS: Serum IGF1 was significantly lower in PAH compared to controls, while IGFBP2 was elevated in PAH subjects compared to controls. In the PAHB, IGF1 was negatively associated with mPAP and PVR, while IGFBP2 was positively associated with PVR and negatively associated with cardiac output and 6-min walk distance. Higher IGFBP2 levels were associated with use of prostacyclin therapy. IGFBP2 was associated with death, transplant, or palliative shunt with a Cox proportional hazard ratio of 8.8 (p < 0.001) but not IGF1 (p = 0.13). CONCLUSIONS: Circulating IGFBP2 is a novel marker for pediatric PAH, which is associated with worse functional status, and survival. IGF axis dysregulation may be an important mechanistic target in pediatric pulmonary arterial hypertension. IMPACT: Pediatric pulmonary hypertension is a severe disease, with poorly understood pathobiology. There are few studies looking at the pathobiology of pulmonary hypertension only in children. The IGF axis is dysregulated in pediatric pulmonary arterial hypertension. IGF axis dysregulation, with increased IGFBP2, is associated with worse clinical outcomes in pediatric pulmonary artery hypertension. IGF axis dysregulation gives new insight into the disease process and may be a mechanistic or therapeutic target.


Asunto(s)
Hipertensión Pulmonar/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Adolescente , Asma/sangre , Asma/diagnóstico , Asma/mortalidad , Biomarcadores , Gasto Cardíaco , Niño , Preescolar , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Epoprostenol/metabolismo , Hemodinámica , Humanos , Hipertensión Pulmonar/mortalidad , Lactante , Recién Nacido , Enfermedades Pulmonares , Miocitos Cardíacos/patología , Pronóstico , Modelos de Riesgos Proporcionales , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Caminata , Adulto Joven
17.
Am J Respir Cell Mol Biol ; 60(1): 106-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30134121

RESUMEN

Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.


Asunto(s)
Biomarcadores/análisis , Regulación de la Expresión Génica , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , MicroARNs/genética , Transcriptoma , Animales , Perfilación de la Expresión Génica , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratones , Transducción de Señal
18.
Eur Respir J ; 53(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30545973

RESUMEN

Since 2000 there have been major advances in our understanding of the genetic and genomics of pulmonary arterial hypertension (PAH), although there remains much to discover. Based on existing knowledge, around 25-30% of patients diagnosed with idiopathic PAH have an underlying Mendelian genetic cause for their condition and should be classified as heritable PAH (HPAH). Here, we summarise the known genetic and genomic drivers of PAH, the insights these provide into pathobiology, and the opportunities afforded for development of novel therapeutic approaches. In addition, factors determining the incomplete penetrance observed in HPAH are discussed. The currently available approaches to genetic testing and counselling, and the impact of a genetic diagnosis on clinical management of the patient with PAH, are presented. Advances in DNA sequencing technology are rapidly expanding our ability to undertake genomic studies at scale in large cohorts. In the future, such studies will provide a more complete picture of the genetic contribution to PAH and, potentially, a molecular classification of this disease.


Asunto(s)
Predisposición Genética a la Enfermedad/epidemiología , Genómica/tendencias , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar Primaria Familiar , Estudio de Asociación del Genoma Completo/tendencias , Humanos , Hipertensión Pulmonar/epidemiología , Mutación
19.
Eur Respir J ; 54(2)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31151956

RESUMEN

Rare variants in the T-box transcription factor 4 gene (TBX4) have recently been recognised as an emerging cause of paediatric pulmonary hypertension (PH). Their pathophysiology and contribution to persistent pulmonary hypertension in neonates (PPHN) are unknown. We sought to define the spectrum of clinical manifestations and histopathology associated with TBX4 variants in neonates and children with PH.We assessed clinical data and lung tissue in 19 children with PH, including PPHN, carrying TBX4 rare variants identified by next-generation sequencing and copy number variation arrays.Variants included six 17q23 deletions encompassing the entire TBX4 locus and neighbouring genes, and 12 likely damaging mutations. 10 infants presented with neonatal hypoxic respiratory failure and PPHN, and were subsequently discharged home. PH was diagnosed later in infancy or childhood. Three children died and two required lung transplantation. Associated anomalies included patent ductus arteriosus, septal defects, foot anomalies and developmental disability, the latter with a higher prevalence in deletion carriers. Histology in seven infants showed abnormal distal lung development and pulmonary hypertensive remodelling.TBX4 mutations and 17q23 deletions underlie a new form of developmental lung disease manifesting with severe, often biphasic PH at birth and/or later in infancy and childhood, often associated with skeletal anomalies, cardiac defects, neurodevelopmental disability and other anomalies.


Asunto(s)
Eliminación de Gen , Hipertensión Pulmonar/genética , Proteínas de Dominio T Box/genética , Adolescente , Adulto , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Variación Genética , Heterocigoto , Humanos , Lactante , Recién Nacido , Pulmón/crecimiento & desarrollo , Trasplante de Pulmón , Masculino , Mutación , Fenotipo , Resistencia Vascular , Adulto Joven
20.
Mol Genet Metab ; 123(2): 135-139, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100779

RESUMEN

Deficiency of ß-Glucocerebrosidase (GBA) activity causes Gaucher Disease (GD). GD can be diagnosed by measuring GBA activity (Beutler and Kuhl, 1990). In this study, we assayed dried blood spots from a cohort (n=528) enriched for GBA mutation carriers (n=78) and GD patients (n=18) using both the tandem mass spectrometry (MS/MS) and fluorescence assays and their respective synthetic substrates. The MS/MS assay differentiated normal controls, which included GBA mutation carriers, from GD patients with no overlap. The fluorescence assay did not always differentiate normal controls including GBA mutation carriers from GD patients and false positives were observed. The MS/MS assay improved specificity compared to the fluorescence assay.


Asunto(s)
Biomarcadores/sangre , Pruebas con Sangre Seca , Fluorescencia , Enfermedad de Gaucher/diagnóstico , Glucosilceramidasa/sangre , Tamizaje Masivo , Espectrometría de Masas en Tándem/métodos , Bioensayo , Recolección de Muestras de Sangre , Estudios de Casos y Controles , Estudios de Cohortes , Enfermedad de Gaucher/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA