Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 525(7568): 247-50, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26354483

RESUMEN

More than two hundred individuals developed Creutzfeldt-Jakob disease (CJD) worldwide as a result of treatment, typically in childhood, with human cadaveric pituitary-derived growth hormone contaminated with prions. Although such treatment ceased in 1985, iatrogenic CJD (iCJD) continues to emerge because of the prolonged incubation periods seen in human prion infections. Unexpectedly, in an autopsy study of eight individuals with iCJD, aged 36-51 years, in four we found moderate to severe grey matter and vascular amyloid-ß (Aß) pathology. The Aß deposition in the grey matter was typical of that seen in Alzheimer's disease and Aß in the blood vessel walls was characteristic of cerebral amyloid angiopathy and did not co-localize with prion protein deposition. None of these patients had pathogenic mutations, APOE ε4 or other high-risk alleles associated with early-onset Alzheimer's disease. Examination of a series of 116 patients with other prion diseases from a prospective observational cohort study showed minimal or no Aß pathology in cases of similar age range, or a decade older, without APOE ε4 risk alleles. We also analysed pituitary glands from individuals with Aß pathology and found marked Aß deposition in multiple cases. Experimental seeding of Aß pathology has been previously demonstrated in primates and transgenic mice by central nervous system or peripheral inoculation with Alzheimer's disease brain homogenate. The marked deposition of parenchymal and vascular Aß in these relatively young patients with iCJD, in contrast with other prion disease patients and population controls, is consistent with iatrogenic transmission of Aß pathology in addition to CJD and suggests that healthy exposed individuals may also be at risk of iatrogenic Alzheimer's disease and cerebral amyloid angiopathy. These findings should also prompt investigation of whether other known iatrogenic routes of prion transmission may also be relevant to Aß and other proteopathic seeds associated with neurodegenerative and other human diseases.


Asunto(s)
Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/etiología , Síndrome de Creutzfeldt-Jakob/etiología , Contaminación de Medicamentos , Hormona de Crecimiento Humana/administración & dosificación , Enfermedad Iatrogénica , Adulto , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/análisis , Autopsia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Estudios de Casos y Controles , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Síndrome de Creutzfeldt-Jakob/complicaciones , Síndrome de Creutzfeldt-Jakob/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Sustancia Gris/metabolismo , Sustancia Gris/patología , Humanos , Persona de Mediana Edad , Priones/administración & dosificación , Priones/metabolismo , Factores de Riesgo
2.
J Biol Chem ; 290(27): 17020-8, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25995455

RESUMEN

The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrP(C)) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrP(C) may act as a receptor for synaptotoxic oligomeric forms of amyloid-ß (Aß). There has been considerable interest in identification of compounds that bind to PrP(C), stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrP(C) could also inhibit the binding of toxic Aß species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aß oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aß binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aß binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aß binding and reduce prion levels was established in cell-based assays.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Unión Proteica/efectos de los fármacos , Azul de Tripano/farmacología , Péptidos beta-Amiloides/genética , Calorimetría , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas PrPC/genética
4.
J Neurosci ; 34(18): 6140-5, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790184

RESUMEN

Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-ß protein (Aß). Aß-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract. These results provide an in vivo proof of principle for such a therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Anticuerpos Monoclonales/administración & dosificación , Región CA1 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Priones/inmunología , Anciano de 80 o más Años , Análisis de Varianza , Animales , Biofisica , Vías de Administración de Medicamentos , Estimulación Eléctrica , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Priones/metabolismo , Ratas , Ratas Wistar , Lóbulo Temporal/química , Lóbulo Temporal/metabolismo
5.
J Biol Chem ; 289(37): 25497-508, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074940

RESUMEN

The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ß-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ß-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein.


Asunto(s)
Amiloide/química , Enfermedades por Prión/metabolismo , Priones/química , Estructura Terciaria de Proteína , Amiloide/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Enfermedades por Prión/patología , Priones/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química
6.
Proc Natl Acad Sci U S A ; 107(41): 17610-5, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876144

RESUMEN

In prion diseases, the misfolded protein aggregates are derived from cellular prion protein (PrP(C)). Numerous ligands have been reported to bind to human PrP(C) (huPrP), but none to the structured region with the affinity required for a pharmacological chaperone. Using equilibrium dialysis, we screened molecules previously suggested to interact with PrP to discriminate between those which did not interact with PrP, behaved as nonspecific polyionic aggregates or formed a genuine interaction. Those that bind could potentially act as pharmacological chaperones. Here we report that a cationic tetrapyrrole [Fe(III)-TMPyP], which displays potent antiprion activity, binds to the structured region of huPrP. Using a battery of biophysical techniques, we demonstrate that Fe(III)-TMPyP forms a 11 complex via the structured C terminus of huPrP with a K(d) of 4.5 ± 2 µM, which is in the range of its IC(50) for curing prion-infected cells of 1.6 ± 0.4 µM and the concentration required to inhibit protein-misfolding cyclic amplification. Therefore, this molecule tests the hypothesis that stabilization of huPrP(C), as a principle, could be used in the treatment of human prion disease. The identification of a binding site with a defined 3D structure opens up the possibility of designing small molecules that stabilize huPrP and prevent its conversion into the disease-associated form.


Asunto(s)
Descubrimiento de Drogas/métodos , Modelos Moleculares , Enfermedades por Prión/tratamiento farmacológico , Priones/metabolismo , Unión Proteica , Tetrapirroles/metabolismo , Sitios de Unión/genética , Biofisica/métodos , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Priones/química , Pliegue de Proteína , Ultracentrifugación
7.
PLoS One ; 18(11): e0294465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37976283

RESUMEN

Oligomers formed from monomers of the amyloid ß-protein (Aß) are thought to be central to the pathogenesis of Alzheimer's disease (AD). Unsurprisingly for a complex disease, current mouse models of AD fail to fully mimic the clinical disease in humans. Moreover, results obtained in a given mouse model are not always reproduced in a different model. Cellular prion protein (PrPC) is now an established receptor for Aß oligomers. However, studies of the Aß-PrPC interaction in different mouse models have yielded contradictory results. Here we performed a longitudinal study assessing a range of biochemical and histological features in the commonly used J20 and APP-PS1 mouse models. Our analysis demonstrated that PrPC ablation had no effect on amyloid accumulation or oligomer production. However, we found that APP-PS1 mice had higher levels of oligomers, that these could bind to recombinant PrPC, and were recognised by the OC antibody which distinguishes parallel, in register fibrils. On the other hand, J20 mice had a lower level of Aß oligomers, which did not interact with PrPC when tested in vitro and were OC-negative. These results suggest the two mouse models produce diverse Aß assemblies that could interact with different targets, highlighting the necessity to characterise the conformation of the Aß oligomers concomitantly with the toxic cascade elicited by them. Our results provide an explanation for the apparent contradictory results found in APP-PS1 mice and the J20 mouse line in regards to Aß toxicity mediated by PrPC.


Asunto(s)
Enfermedad de Alzheimer , Proteínas PrPC , Priones , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Priónicas/genética , Estudios Longitudinales , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Ratones Transgénicos
8.
J Neurosci ; 30(43): 14411-9, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980598

RESUMEN

Nonfibrillar, water-soluble low-molecular weight assemblies of the amyloid ß-protein (Aß) are believed to play an important role in Alzheimer's disease (AD). Aqueous extracts of human brain contain Aß assemblies that migrate on SDS-polyacrylamide gels and elute from size exclusion as dimers (∼8 kDa) and can block long-term potentiation and impair memory consolidation in the rat. Such species are detected specifically and sensitively in extracts of Alzheimer brain suggesting that SDS-stable dimers may be the basic building blocks of AD-associated synaptotoxic assemblies. Consequently, understanding the structure and properties of Aß dimers is of great interest. In the absence of sufficient brain-derived dimer to facilitate biophysical analysis, we generated synthetic dimers designed to mimic the natural species. For this, Aß(1-40) containing cysteine in place of serine 26 was used to produce disulphide cross-linked dimer, (AßS26C)2. Such dimers had no detectable secondary structure, produced an analytical ultracentrifugation profile consistent for an ∼8.6 kDa protein, and had no effect on hippocampal long-term potentiation (LTP). However, (AßS26C)2 aggregated more rapidly than either AßS26C or wild-type monomers and formed parastable ß-sheet rich, thioflavin T-positive, protofibril-like assemblies. Whereas wild-type Aß aggregated to form typical amyloid fibrils, the protofibril-like structures formed by (AßS26C)2 persisted for prolonged periods and potently inhibited LTP in mouse hippocampus. These data support the idea that Aß dimers may stabilize the formation of fibril intermediates by a process distinct from that available to Aß monomer and that higher molecular weight prefibrillar assemblies are the proximate mediators of Aß toxicity.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Ovillos Neurofibrilares/patología , Neurotoxinas/toxicidad , Sinapsis/patología , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Animales , Dicroismo Circular , Reactivos de Enlaces Cruzados , Dimerización , Sinergismo Farmacológico , Electroforesis en Gel de Poliacrilamida , Electrofisiología , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Datos de Secuencia Molecular , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neurotoxinas/química , Conformación Proteica , Dispersión de Radiación , Sinapsis/efectos de los fármacos , Ultracentrifugación
9.
Biol Psychiatry ; 83(4): 358-368, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29331212

RESUMEN

The initial report that cellular prion protein (PrPC) mediates toxicity of amyloid-ß species linked to Alzheimer's disease was initially treated with scepticism, but growing evidence supports this claim. That there is a high-affinity interaction is now clear, and its molecular basis is being unraveled, while recent studies have identified possible downstream toxic mechanisms. Determination of the clinical significance of such interactions between PrPC and disease-associated amyloid-ß species will require experimental medicine studies in humans. Trials of compounds that inhibit PrP-dependent amyloid-ß toxicity are commencing in humans, and although it is clear that only a fraction of Alzheimer's disease toxicity could be governed by PrPC, a partial, but still therapeutically useful, role in human disease may soon be testable.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Priónicas/metabolismo , Animales , Humanos
10.
EMBO Mol Med ; 10(1): 22-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113975

RESUMEN

Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteína C9orf72/genética , Descubrimiento de Drogas , Demencia Frontotemporal/tratamiento farmacológico , G-Cuádruplex/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Esclerosis Amiotrófica Lateral/genética , Animales , Drosophila , Demencia Frontotemporal/genética , Humanos , ARN/química , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/uso terapéutico
11.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29142106

RESUMEN

Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid ß-protein (Aß) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aß assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aß preparations, we found that the form of Aß assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aß which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aß can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aß and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aß on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aß deposition is common.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Línea Celular , Ratones , Proteínas PrPSc/toxicidad , Unión Proteica
12.
Nat Commun ; 5: 3374, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24594908

RESUMEN

NMDA-type glutamate receptors (NMDARs) are currently regarded as paramount in the potent and selective disruption of synaptic plasticity by Alzheimer's disease amyloid ß-protein (Aß). Non-NMDAR mechanisms remain relatively unexplored. Here we describe how Aß facilitates NMDAR-independent long-term depression of synaptic transmission in the hippocampus in vivo. Synthetic Aß and Aß in soluble extracts of Alzheimer's disease brain usurp endogenous acetylcholine muscarinic receptor-dependent long-term depression, to enable long-term depression that required metabotropic glutamate-5 receptors (mGlu5Rs). We also find that mGlu5Rs are essential for Aß-mediated inhibition of NMDAR-dependent long-term potentiation in vivo. Blocking Aß binding to cellular prion protein with antibodies prevents the facilitation of long-term depression. Our findings uncover an overarching role for Aß-PrP(C)-mGlu5R interplay in mediating both LTD facilitation and LTP inhibition, encompassing NMDAR-mediated processes that were previously considered primary.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Hipocampo/metabolismo , Masculino , Priones/metabolismo , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5/genética
13.
Science ; 345(6201): 1192-1194, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25103406

RESUMEN

An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question, we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats, but not stop codon-interrupted "RNA-only" repeats in Drosophila caused adult-onset neurodegeneration. Thus, expanded repeats promoted neurodegeneration through dipeptide repeat proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence revealed that both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72 , Línea Celular Tumoral , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Escherichia coli , Demencia Frontotemporal/patología , Humanos , Neuronas/metabolismo , Neuronas/patología
15.
Nat Commun ; 4: 2416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24022506

RESUMEN

Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-ß protein (Aß) have important roles in Alzheimer's disease with toxicities mimicked by synthetic Aß(1-42). However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aß(1-42) after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aß assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aß-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aß nanotubes or their interaction with PrP might have a role in treatment of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Nanotubos/toxicidad , Priones/toxicidad , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/ultraestructura , Animales , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Factores de Tiempo , Tomografía
16.
Sci Rep ; 2: 1016, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23264878

RESUMEN

Large expansions of a non-coding GGGGCC-repeat in the first intron of the C9orf72 gene are a common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G-rich sequences have a propensity for forming highly stable quadruplex structures in both RNA and DNA termed G-quadruplexes. G-quadruplexes have been shown to be involved in a range of processes including telomere stability and RNA transcription, splicing, translation and transport. Here we show using NMR and CD spectroscopy that the C9orf72 hexanucleotide expansion can form a stable G-quadruplex, which has profound implications for disease mechanism in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , G-Cuádruplex , Proteínas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72 , ADN/genética , Demencia Frontotemporal/metabolismo , Genotipo , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteínas/química
17.
Nat Commun ; 2: 336, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21654636

RESUMEN

A role for PrP in the toxic effect of oligomeric forms of Aß, implicated in Alzheimer's disease (AD), has been suggested but remains controversial. Here we show that PrP is required for the plasticity-impairing effects of ex vivo material from human AD brain and that standardized Aß-derived diffusible ligand (ADDL) preparations disrupt hippocampal synaptic plasticity in a PrP-dependent manner. We screened a panel of anti-PrP antibodies for their ability to disrupt the ADDL-PrP interaction. Antibodies directed to the principal PrP/Aß-binding site and to PrP helix-1, were able to block Aß binding to PrP suggesting that the toxic Aß species are of relatively high molecular mass and/or may bind multiple PrP molecules. Two representative and extensively characterized monoclonal antibodies directed to these regions, ICSM-35 and ICSM-18, were shown to block the Aß-mediated disruption of synaptic plasticity validating these antibodies as candidate therapeutics for AD either individually or in combination.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Modelos Moleculares , Plasticidad Neuronal/fisiología , Priones/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Enfermedad de Alzheimer/inmunología , Animales , Anticuerpos Monoclonales , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Electrofisiología , Humanos , Ligandos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Ultracentrifugación
18.
Infect Disord Drug Targets ; 9(1): 48-57, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19200015

RESUMEN

Prions are unique in that the infectious particles contain no detectable nucleic acid and appear to consist of aggregated forms of misfolded cellular prion protein. Prions form distinct strains and can transmit disease between species. Whilst the molecular basis of prion diseases is beginning to be unravelled, much remains unknown including the atomic structure of the infectious and toxic species. In contrast, the structure and folding properties of the cellular prion protein are well characterised and, although its precise function remains enigmatic, constitutive knockout of protein expression in mice produces apparently healthy animals but which are fully resistant to prion infection. Furthermore, recent data show that neuronal knockout of the gene encoding for prion protein during established brain infection leads to reversal of pathology and behavioural deficits, giving hope that effective therapies could be designed. Stabilising the cellular form of the prion protein and preventing it from misfolding could be one way to slow or prevent prion formation. Immunotherapy of peripherally prion-infected mice with an antibody specific for cellular prion protein can prevent disease onset. However, a small molecule capable of curing prion infection in vivo has still to be discovered. Recent work has provided proof of principle that compounds which bind selectively to the cellular prion protein could act as therapeutics for prion diseases.


Asunto(s)
Proteínas PrPC/fisiología , Enfermedades por Prión/metabolismo , Priones/patogenicidad , Animales , Humanos , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/prevención & control , Priones/genética , Priones/metabolismo
19.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 3): 264-72, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18323621

RESUMEN

The high photon flux at third-generation synchrotron sources can inflict significant primary radiation damage upon macromolecular crystals, even when the crystals are cryocooled. However, specific radiation-induced structural changes can be exploited for de novo phasing by an approach known as radiation damage-induced phasing (RIP). Here, RIP and single-wavelength anomalous dispersion (SAD) phasing were alternatively used to derive experimental phases to 1.2 A resolution for crystals of an alpha-helical 18-residue peptide, MINTS, which was derived from the neurotoxin apamin and the palladium-bound structure of which is now reported. Helix formation is induced by the binding of palladium (or copper) to two histidines spaced four residues apart, while two disulfide bonds tether the N-terminal helix to the C-terminal loop-like part of the peptide. Either RIP or SAD phasing of the palladium-bound and copper-bound forms of MINTS, which crystallized in different space groups, resulted in density maps of superb quality. Surprisingly, RIP phasing of the metal-bound complex structures of MINTS was a consequence of differential radiation damage, resting primarily on the reduction of the disulfide bonds in Pd-MINTS and on depletion of the metal sites in Cu-MINTS. Its miniprotein-like characteristics, versatile metal-binding properties and ease of crystallization suggest MINTS to be a convenient test specimen for methods development in crystallographic phasing based on either synchrotron or in-house X-ray diffraction data.


Asunto(s)
Cobre/química , Plomo/química , Estructura Secundaria de Proteína/efectos de los fármacos , Difracción de Rayos X , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Sustancias Macromoleculares , Mentha/química , Modelos Moleculares , Radiación
20.
J Am Chem Soc ; 128(28): 9187-93, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16834392

RESUMEN

The design, synthesis, and characterization of a folded high-affinity metal-binding peptide is described. Based on the previously described folded peptide NTH-18, in which an alpha-helix was constrained through two disulfide bonds to a C-terminal extension of noncanonical secondary structure, a peptide (1) was designed to contain two histidine residues in positions 3 and 7. Air oxidation of 1 led to the formation of peptide 2, which contained two intramolecular disulfide bonds. The presence of the two histidines significantly destabilized the alpha-helical structure of 2 when compared to NTH-18. However, CD spectroscopy revealed that the addition of certain transition metal ions allowed the reformation of a stable alpha-helix. CD, NMR, and EPR spectroscopy as well as MALDI-TOF mass spectrometry indicated that 2 bound to Cu2+ to form a 1:1 complex via the imidazoles of the two histidine side chains. A glycine displacement assay revealed a dissociation constant for this complex of 5 nM at pH 8, which is the lowest reported value for a designed Cu2+-binding peptide. This peptide displayed more than 100-fold selectivity for Cu2+ over Zn2+, Ni2+, and Co2+. The 1.05 A crystal structure of the Cu(II)-complex of 2 revealed a square-pyramidal coordination geometry and confirmed that 2 bound to copper in an alpha-helical conformation via its two histidine side chains. The high affinity metal binding of peptide 2 demonstrates that metals can be used for the selective nucleation of alpha-helices.


Asunto(s)
Cobre/química , Péptidos/química , Pliegue de Proteína , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA