Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 96: 129505, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838340

RESUMEN

RNA helicase DHX33 has been identified to be a critical factor in promoting cancer development. Genetic deletion of DHX33 significantly blocks tumorigenesis. Importantly, its helicase activity was found to be pivotal for exerting cellular functions. Herein we used a helicase-based high throughput screening (HTS) to discover DHX33 inhibitors from Chembridge chemical library containing 15,000 small molecules. We identified a hit compound containing benzimidazole ring that demonstrated activity against DHX33 with certain selectivity. Further structural optimization led to the design and synthesis of a series of analog inhibitors. Considering the potential role of DHX33 in cancer development, the compounds were evaluated based on the cytotoxicity activity in U251-MG cancer cells in vitro. Among them, compound IVa (KY386) was identified to be a selective inhibitor for DHX33 helicase with potent anti-cancer activity and moderate metabolic stability. These results support the promising role of DHX33 inhibitors for development of novel anti-cancer drugs.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología
2.
Biochim Biophys Acta Gen Subj ; 1868(3): 130547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143011

RESUMEN

Tumor suppressor p53 is frequently null or mutated in human cancers. Here in this study, DHX33 protein was found to be induced in p53 null cells in vitro, and in p53 mutant lung tumorigenesis in vivo. Cholesterol metabolism through mevalonate pathway is pivotal for cell proliferation and is frequently altered in human cancers. Mice carrying mutant p53 and KrasG12D alleles showed upregulation of mevalonate pathway gene expression. However upon DHX33 loss, their upregulation was significantly debilitated. Additionally, in many human cancer cells, DHX33 knockdown caused inhibition of mavelonate pathway gene transcription. We propose DHX33 locates downstream of mutant p53 and Ras to regulate mevalonate pathway gene transcription and thereby supports cancer development in vivo.


Asunto(s)
Ácido Mevalónico , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pulmón/metabolismo , Carcinogénesis , Transcripción Genética , ARN Helicasas DEAD-box/genética
3.
Environ Pollut ; 212: 605-614, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27016889

RESUMEN

Microarray analysis of toxicogenomic effects of CuO NPs on Arabidopsis thaliana was conducted. Arabidopsis growth was significantly inhibited by CuO NPs (10 and 20 mg/L). CuO NPs (10 and 20 mg/L) caused significant root damage after short-time (0-2 h) exposure while their corresponding Cu(2+) ions (0.80 and 1.35 mg/L) did not show any root damage. After longer exposure times (1 and 2 days), Cu(2+) ions induced obvious root damage, indicating that released Cu(2+) ions from CuO NPs contributed partial toxicity during CuO NPs exposure. After CuO NPs (10 mg/L) exposure for 2 h, reactive oxygen species (ROS) generation in root tips was much higher than that in the corresponding Cu(2+) ions (0.8 mg/L) treatment. The gene ontology categories identified from microarray analysis showed that CuO NPs (10 mg/L) caused 1658 differentially expressed genes (p < 0.01, fold change>3). Of these, 1035 and 623 genes were up-regulated and down-regulated, respectively. 47 genes among all the up-regulated genes were response to oxidative stress, in which 19 genes were also related to "response to abiotic stimulus" and 12 genes were involved in the phenylpropanoid biosynthesis of the KEGG metabolic pathway. The expression of all the selected genes (RHL41, MSRB7, BCB, PRXCA, and MC8) measured using quantitative RT-PCR was consistent with the microarray analysis. CuO NPs contributed much stronger up-regulation of oxidative stress-related genes than the corresponding Cu(2+) ions.


Asunto(s)
Arabidopsis/efectos de los fármacos , Cobre/toxicidad , Nanopartículas del Metal/toxicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/metabolismo , Toxicogenética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA