Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619396

RESUMEN

Piezo1 and Piezo2 are recently reported mechanosensory ion channels that transduce mechanical stimuli from the environment into intracellular biochemical signals in various tissues and organ systems. Here, we show that Piezo1 and Piezo2 display a robust expression during jawbone development. Deletion of Piezo1 in neural crest cells causes jawbone malformations in a small but significant number of mice. We further demonstrate that disruption of Piezo1 and Piezo2 in neural crest cells causes more striking defects in jawbone development than any single knockout, suggesting essential but partially redundant roles of Piezo1 and Piezo2. In addition, we observe defects in other neural crest derivatives such as malformation of the vascular smooth muscle in double knockout mice. Moreover, TUNEL examinations reveal excessive cell death in osteogenic cells of the maxillary and mandibular arches of the double knockout mice, suggesting that Piezo1 and Piezo2 together regulate cell survival during jawbone development. We further demonstrate that Yoda1, a Piezo1 agonist, promotes mineralization in the mandibular arches. Altogether, these data firmly establish that Piezo channels play important roles in regulating jawbone formation and maintenance.


Asunto(s)
Canales Iónicos , Maxilares , Cresta Neural , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/metabolismo , Canales Iónicos/genética , Maxilares/embriología , Maxilares/metabolismo , Mandíbula/embriología , Mandíbula/metabolismo , Ratones Noqueados , Cresta Neural/metabolismo , Osteogénesis/genética , Pirazinas , Tiadiazoles
2.
Differentiation ; 126: 10-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797829

RESUMEN

Piezo1 and Piezo2 are recently discovered mechanosensory ion channels. Piezo channels transduce mechanical stimulation into cellular signaling in a variety of tissues and organ systems. The functional roles of Piezo1 and Piezo2 have been revealed in both developmental and physiological scenarios by using mouse genetic models. Mechanotransduction by Piezo1 channels regulates osteoblast/osteocyte activity and, thus, strengthens the skeleton enabling it to adapt to a wide range of mechanical loadings. Deletion of the Piezo1 gene in the developing skeleton causes bone malformations that lead to spontaneous bone fractures, while inactivity of Piezo1 in adulthood results in osteoporosis. Furthermore, Piezo2 channels in sensory neurons might provide another route of skeletal regulation. Piezo channels also regulate the proliferation and differentiation of various types of stem cells. PIEZO1 and PIEZO2 mutations and channel malfunctions have been implicated in an increasing number of human diseases, and PIEZO channels are currently emerging as potential targets for disease treatment. This review summarizes the important findings of Piezo channels for skeletal development and homeostasis using the mouse genetic model system.


Asunto(s)
Mecanotransducción Celular , Modelos Genéticos , Adulto , Animales , Homeostasis/genética , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Ratones
3.
Dev Biol ; 477: 241-250, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052210

RESUMEN

A critical cell type participating in cardiac outflow tract development is a subpopulation of the neural crest cells, the cardiac neural crest cells (NCCs), whose defect causes a spectrum of cardiovascular abnormalities. Accumulating evidence indicates that mTOR, which belongs to the PI3K-related kinase family and impacts multiple signaling pathways in a variety of contexts, plays a pivotal role for NCC development. Here, we investigated functional roles of mTOR for cardiac neural crest development using several lines of mouse genetic models. We found that disruption of mTOR caused NCC defects and failure of cardiac outflow tract separation, which resulted in a spectrum of cardiac defects including persistent truncus arteriosus, ventricular septal defect and ventricular wall defect. Specifically, mutant neural crest cells showed reduced migration into the cardiac OFT and prematurely exited the cell cycle. A number of critical factors and fundamental signaling pathways, which are important for neural crest and cardiomyocyte development, were impaired. Moreover, actin dynamics was disrupted by mTOR deletion. Finally, by phenotyping the neural crest Rptor and Rictor knockout mice respectively, we demonstrate that mTOR acts principally through the mTORC1 pathway for cardiac neural crest cells. Altogether, these data established essential roles of mTOR for cardiac NCC development and imply that dysregulation of mTOR in NCCs may underline a spectrum of cardiac defects.


Asunto(s)
Anomalías Cardiovasculares/genética , Corazón/embriología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocardio/metabolismo , Cresta Neural/embriología , Serina-Treonina Quinasas TOR/fisiología , Animales , Células Cultivadas , Eliminación de Gen , Redes y Vías Metabólicas , Ratones , Cresta Neural/metabolismo , Serina-Treonina Quinasas TOR/genética
4.
Dev Biol ; 467(1-2): 77-87, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866472

RESUMEN

We herein report that deletion of mTOR in dental epithelia caused defective development of multiple cell layers of the enamel organ, which culminated in tooth malformation and cystogenesis. Specifically, cells of the stellate reticulum and stratum intermedium were poorly formed, resulting in cystic changes. The pre-ameloblasts failed to elongate along the apical-basal axis and persisted vigorous expression of Sox2 and P63, which are normally downregulated during cytodifferentiation. Expression of amelogenic markers was also attenuated in mutants. Cell proliferation and cell sizes in mutants were significantly reduced over time. Importantly, we found reduced amounts and aberrant aggregations of cytoskeletal components in mutants, along with attenuated expression of cytoskeleton regulator Cdc42, whose epithelial deletion causes a similar phenotype. Moreover, disruption of actin assembly in an organ culture system affected cell proliferation and cytodifferentiation of tooth germs, supporting a causative role of mTOR-regulated cytoskeleton dynamics for the observed phenotype of mTOR mutant mice. In further support of this view, we showed that mTOR overactivation caused increased cytoskeletal component synthesis and assembly, along with accelerated cytodifferentiation in the enamel organ. Finally, we demonstrated that mTOR regulated enamel organ development principally through the mTORC1 pathway.


Asunto(s)
Citoesqueleto/metabolismo , Órgano del Esmalte/embriología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Citoesqueleto/genética , Órgano del Esmalte/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Serina-Treonina Quinasas TOR/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
5.
PLoS Genet ; 14(7): e1007491, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975682

RESUMEN

mTOR is a highly conserved serine/threonine protein kinase that is critical for diverse cellular processes in both developmental and physiological settings. mTOR interacts with a set of molecules including Raptor and Rictor to form two distinct functional complexes, namely the mTORC1 and mTORC2. Here, we used novel genetic models to investigate functions of the mTOR pathway for cranial neural crest cells (NCCs), which are a temporary type of cells arising from the ectoderm layer and migrate to the pharyngeal arches participating craniofacial development. mTOR deletion elicited a proliferation deficit and excessive apoptosis of post-migratory NCCs, leading to growth arrest of the facial primordia along with midline orofacial clefts. Furthermore, NCC differentiation was impaired. Thus, NCC derivatives, such as skeletons, vasculatures and neural tissues were either rudimentary or malformed. We further demonstrate that disruption of mTOR caused P53 hyperactivity and cell cycle arrest in cranial NCCs, and lowering P53 activity by one copy reduction attenuated the severity of craniofacial phenotype in NCC-mTOR knockout mice. Remarkably, NCC-Rptor disruption caused a spectrum of defects mirroring that of the NCC-mTOR deletion, whereas NCC-Rictor disruption only caused a mild craniofacial phenotype compared to the mTOR and Rptor conditional knockout models. Altogether, our data demonstrate that mTOR functions mediated by mTORC1 are indispensable for multiple processes of NCC development including proliferation, survival, and differentiation during craniofacial morphogenesis and organogenesis, and P53 hyperactivity in part accounts for the defective craniofacial development in NCC-mTOR knockout mice.


Asunto(s)
Anomalías Craneofaciales/genética , Cresta Neural/embriología , Transducción de Señal/fisiología , Cráneo/embriología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Anomalías Craneofaciales/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/fisiología , Cresta Neural/citología , Cresta Neural/metabolismo , Organogénesis/fisiología , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Lab Invest ; 97(12): 1427-1438, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28892094

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), caused by PKD1 and PKD2 gene mutations, is one of the most common genetic diseases, affecting up to 1 in 500 people. Mutations of PKD1 account for over 85% of ADPKD cases. However, mechanisms of disease progression and explanations for the wide range in disease phenotype remain to be elucidated. Moreover, functional roles of PKD1 in the renal stromal compartment are poorly understood. In this work, we tested if Pkd1 is essential for development and maintenance of the renal stromal compartment and if this role contributes to pathogenesis of polycystic kidney disease using a novel tissue-specific knockout mouse model. We demonstrate that deletion of Pkd1 from renal stromal cells using Foxd1-driven Cre causes a spectrum of defects in the stromal compartment, including excessive apoptosis/proliferation and extracellular matrix deficiency. Renal vasculature was also defective. Further, mutant mice showed epithelial changes and progressive cystogenesis in adulthood modeling human ADPKD. Altogether, we provide robust evidence to support indispensable roles for Pkd1 in development and maintenance of stromal cell derivatives by using a novel ADPKD model. Moreover, stromal compartment defects caused by Pkd1 deletion might serve as an important mechanism for pathogenesis of ADPKD.


Asunto(s)
Riñón , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Riñón/citología , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Células del Estroma/citología , Células del Estroma/metabolismo
7.
Dev Biol ; 391(1): 17-31, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24727670

RESUMEN

Tbx18 has been shown to be essential for ureteral development. However, it remains unclear whether it plays a direct role in kidney development. Here we addressed this by focusing on examining the pattern and contribution of Tbx18+ cells in the kidney and its role in kidney vascular development. Expression studies and genetic lineage tracing revealed that Tbx18 is expressed in renal capsule, vascular smooth muscle cells and pericytes and glomerular mesangial cells in the kidney and that Tbx18-expressing progenitors contribute to these cell types. Examination of Tbx18(-/-) kidneys revealed large reduction in vasculature density and dilation of glomerular capillary loops. While SMA+ cells were reduced in the mutant, PDGFRß+ cells were seen in early capillary loop renal corpuscles in the mutant, but fewer than in the controls, and further development of the mesangium failed. Analysis of kidney explants cultured from E12.5 excluded the possibility that the defects observed in the mutant were caused by ureter obstruction. Reduced proliferation in glomerular tuft and increased apoptosis in perivascular mesenchyme were observed in Tbx18(-/-) kidneys. Thus, our analyses have identified a novel role of Tbx18 in kidney vasculature development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesangio Glomerular/embriología , Riñón/irrigación sanguínea , Riñón/embriología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/fisiología , Animales , Apoptosis , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Transducción de Señal , Factores de Tiempo
8.
Differentiation ; 87(3-4): 161-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24951251

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited genetic diseases, caused by mutations in PKD1 and/ or PKD2. Infertility and reproductive tract abnormalities in male ADPKD patients are very common and have higher incidence than in the general population. In this work, we reveal novel roles of Pkd2 for male reproductive system development. Disruption of Pkd2 caused dilation of mesonephric tubules/efferent ducts, failure of epididymal coiling, and defective testicular development. Deletion of Pkd2 in the epithelia alone was sufficient to cause reproductive tract defects seen in Pkd2(-/-) mice, suggesting that epithelial Pkd2 plays a pivotal role for development and maintenance of the male reproductive tract. In the testis, Pkd2 also plays a role in interstitial tissue and testicular cord development. In-depth analysis of epithelial-specific knockout mice revealed that Pkd2 is critical to maintain cellular phenotype and developmental signaling in the male reproductive system. Taken together, our data for the first time reveal novel roles for Pkd2 in male reproductive system development and provide new insights in male reproductive system abnormality and infertility in ADPKD patients.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Testículo/metabolismo , Conductos Mesonéfricos/metabolismo , Animales , Epidídimo/citología , Epidídimo/embriología , Epidídimo/metabolismo , Células Epiteliales/metabolismo , Masculino , Ratones , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Testículo/citología , Testículo/embriología , Vía de Señalización Wnt , Conductos Mesonéfricos/citología , Conductos Mesonéfricos/embriología
9.
Development ; 137(5): 755-65, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20110314

RESUMEN

Dysfunction of the ureter often leads to urine flow impairment from the kidney to the bladder, causing dilation of the ureter and/or renal pelvis. Six1 is a crucial regulator of renal development: mutations in human SIX1 cause branchio-oto-renal (BOR) syndrome and Six1(-/-) mice exhibit renal agenesis, although the ureter is present. It remains unclear whether Six1 plays a role in regulating ureter morphogenesis. We demonstrate here that Six1 is differentially expressed during ureter morphogenesis. It was expressed in undifferentiated smooth muscle (SM) progenitors, but was downregulated in differentiating SM cells (SMCs) and had disappeared by E18.5. In Six1(-/-) mice, the ureteral mesenchymal precursors failed to condense and differentiate into normal SMCs and showed increased cell death, indicating that Six1 is required for the maintenance and normal differentiation of SM progenitors. A delay in SMC differentiation was observed in Six1(-/-) ureters. A lack of Six1 in the ureter led to hydroureter and hydronephrosis without anatomical obstruction when kidney formation was rescued in Six1(-/-) embryos by specifically expressing Six1 in the metanephric mesenchyme, but not the ureter, under control of the Eya1 promoter. We show that Six1 and Tbx18 genetically interact to synergistically regulate SMC development and ureter function and that their gene products form a complex in cultured cells and in the developing ureter. Two missense mutations in SIX1 from BOR patients reduced or abolished SIX1-TBX18 complex formation. These findings uncover an essential role for Six1 in establishing a functionally normal ureter and provide new insights into the molecular basis of urinary tract malformations in BOR patients.


Asunto(s)
Proteínas de Homeodominio/fisiología , Músculo Liso/embriología , Proteínas de Dominio T Box/fisiología , Uréter/embriología , Animales , Apoptosis/genética , Síndrome Branquio Oto Renal/embriología , Síndrome Branquio Oto Renal/genética , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hidronefrosis/embriología , Hidronefrosis/genética , Riñón/embriología , Riñón/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Desarrollo de Músculos/genética , Músculo Liso/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Uréter/metabolismo , Urotelio/embriología , Urotelio/metabolismo
10.
Front Immunol ; 14: 1099017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122730

RESUMEN

Periodontitis is one of the most common oral diseases in humans, affecting over 40% of adult Americans. Pain-sensing nerves, or nociceptors, sense local environmental changes and often contain neuropeptides. Recent studies have suggested that nociceptors magnify host response and regulate bone loss in the periodontium. A subset of nociceptors projected to periodontium contains neuropeptides, such as calcitonin gene-related peptide (CGRP) or substance P (SP). However, the specific roles of neuropeptides from nociceptive neural terminals in periodontitis remain to be determined. In this study, we investigated the roles of neuropeptides on host responses and bone loss in ligature-induced periodontitis. Deletion of tachykinin precursor 1 (Tac1), a gene that encodes SP, or treatment of gingiva with SP antagonist significantly reduced bone loss in ligature-induced periodontitis, whereas deletion of calcitonin related polypeptide alpha (Calca), a gene that encodes CGRP, showed a marginal role on bone loss. Ligature-induced recruitment of leukocytes, including neutrophils, and increase in cytokines leading to bone loss in periodontium was significantly less in Tac1 knockout mice. Furthermore, intra-gingival injection of SP, but not neurokinin A, induced a vigorous inflammatory response and osteoclast activation in alveolar bone and facilitated bone loss in ligature-induced periodontitis. Altogether, our data suggest that SP plays significant roles in regulating host responses and bone resorption in ligature-induced periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Sustancia P , Animales , Humanos , Ratones , Pérdida de Hueso Alveolar/etiología , Péptido Relacionado con Gen de Calcitonina , Osteoclastos
11.
Dev Biol ; 352(1): 141-51, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21281623

RESUMEN

Urinary tract morphogenesis requires subdivision of the ureteric bud (UB) into the intra-renal collecting system and the extra-renal ureter, by responding to signals in its surrounding mesenchyme. BMP4 is a mesenchymal regulator promoting ureter development, while GREM1 is necessary to negatively regulate BMP4 activity to induce UB branching. However, the mechanisms that regulate the GREM1-BMP4 signaling are unknown. Previous studies have shown that Six1-deficient mice lack kidneys, but form ureters. Here, we show that the tip cells of Six1(-/-) UB fail to form an ampulla for branching. Instead, the UB elongates within Tbx18- and Bmp4-expressing mesenchyme. We find that the expression of Grem1 in the metanephric mesenchyme (MM) is Six1-dependent. Treatment of Six1(-/-) kidney rudiments with GREM1 protein restores ampulla formation and branching morphogenesis. Furthermore, we demonstrate that genetic reduction of BMP4 levels in Six1(-/-) (Six1(-/-); Bmp4(+/-)) embryos restores urinary tract morphogenesis and kidney formation. This study uncovers an essential function for Six1 in the MM as an upstream regulator of Grem1 in initiating branching morphogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/embriología , Morfogénesis , Animales , Proteína Morfogenética Ósea 4/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Dosificación de Gen/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Riñón/embriología , Riñón/metabolismo , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Morfogénesis/efectos de los fármacos , Organogénesis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas de Dominio T Box/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Uréter/citología , Uréter/efectos de los fármacos , Uréter/embriología , Uréter/metabolismo , Proteínas Wnt/metabolismo
12.
Cells Tissues Organs ; 193(6): 393-403, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21123999

RESUMEN

Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells.


Asunto(s)
Arterias/anomalías , Proteína Morfogenética Ósea 4/genética , Región Branquial/anomalías , Región Branquial/irrigación sanguínea , Sistema Cardiovascular/embriología , Silenciador del Gen , Proteínas de Dominio T Box/genética , Animales , Aorta Torácica/anomalías , Aorta Torácica/embriología , Aorta Torácica/patología , Apoptosis , Arterias/patología , Biomarcadores/metabolismo , Región Branquial/patología , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Proliferación Celular , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Humanos , Integrasas , Ratones , Penetrancia , Fenotipo
13.
Dev Biol ; 316(2): 417-30, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18334251

RESUMEN

TGFbeta/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFbeta/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2 alpha, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFbeta/BMP signals are essential for appropriate NCC development.


Asunto(s)
Anomalías Craneofaciales/genética , Muerte Fetal/genética , Cardiopatías Congénitas/genética , Cresta Neural/fisiología , Faringe/embriología , Proteína Smad4/genética , Animales , Regulación hacia Abajo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo
14.
Int J Dev Biol ; 50(6): 511-21, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16741866

RESUMEN

The BMP signalling pathway is conserved throughout evolution and essential for mammalian embryonic and postnatal development and growth. In the vertebrate head, this signal is involved in the development of a variety of structures and shows divergent roles. During early head development, BMP signalling participates in the induction, formation, determination and migration of the cranial neural crest cells, which give rise to most of the craniofacial structures. Subsequently, it is also important for patterning and formation of facial primordia. During craniofacial skeletogenesis, BMP signalling is an early inductive signal required for committed cell migration, condensation, proliferation and differentiation. Thereafter, BMP signalling maintains regulatory roles in skeletons and skeletal growth centres. For myogenesis, BMP signalling is a negative regulator. Importantly, myostatin has been identified as a key mediator in this process. During palatogenesis, the crucial role of BMP signalling is demonstrated by mouse models with Alk2 or Alk3 (BMP type I receptors) deletion from the neural crest or craniofacial region, in which cleft palate is one of the major anomalies. BMP signalling is also an important participant for tooth development, regulating early tooth morphogenesis and subsequent odontoblast differentiation. In this review these aspects are discussed in detail with a focus on recent advances.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Huesos Faciales/embriología , Transducción de Señal/fisiología , Cráneo/embriología , Animales , Ratones
15.
Anat Rec A Discov Mol Cell Evol Biol ; 288(12): 1250-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17066377

RESUMEN

The cranial base is formed by endochondral ossification and is characterized by the presence of the synchondrosis growth centers. The aim of this study was to describe the histological development of the mouse midsagittal cranial base area from embryonic day 10 (E10) to the postnatal age of 2 months. The Bmp family of signaling molecules serves important functions in embryo and bone development and may therefore play a significant role in the early formation of the cranial base. To investigate this, we analyzed the mRNA pattern of expression of Bmp2-6 in the mouse cranial base from E10 to 5 days postnatally using radioactive in situ hybridization. We found that the formation of the mouse cranial base corresponds to that of rat and proceeds in a caudorostral sequence. Moreover, all Bmps studied showed distinct and overlapping developmentally regulated expression domains. Bmp2, Bmp5, and Bmp6 were expressed in the early mesenchymal condensations. Later, Bmp2, Bmp3, Bmp4, and Bmp5 were detected in the perichondrium and in the adjacent mesenchyme. Subsequently, Bmp2 and Bmp6 expressions were confined to hypertrophic chondrocytes, while Bmp3, Bmp4, and Bmp5 were expressed in the osteoblasts of the trabecular bone and bone collar. Interestingly, Bmp3 was uniquely expressed postnatally in the resting zone of the synchondrosis growth center, suggesting a role in the regulation of cranial base growth. These results suggest that Bmp signaling may serve specific and synergistic functions at different key stages of cranial base development and growth.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/metabolismo , Base del Cráneo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 3 , Proteína Morfogenética Ósea 4 , Proteína Morfogenética Ósea 5 , Proteína Morfogenética Ósea 6 , Hibridación in Situ , Ratones , Base del Cráneo/embriología , Factores de Tiempo
16.
Angle Orthod ; 76(6): 990-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17090159

RESUMEN

OBJECTIVE: To examine the expression pattern of the Fgf and Msx genes in cranial base development. MATERIALS AND METHODS: To detect the expression of these genes, antisense riboprobes were synthesized by in vitro transcription. Radioactive in situ hybridization was performed on parasagittal sections of embryonic mouse heads. RESULTS: Msx2 was observed in the underlying perichondrium at restricted stages. Msx1 was not observed in cranial base development. Fgf1 was localized in osteogenic cells from the time of ossification; Fgf10 was highly expressed in the occipital-vertebral joint during E13 to E14; Fgf2, Fgf7, and Fgf18 were localized in the perichondria; Fgf12 was transitorily expressed at early chondrocranium; Fgf9 was seen in the hypertrophic chondrocytes. CONCLUSIONS: The Fgf and Msx gene expression in the cranial base was different from that of other skeletons.


Asunto(s)
Factores de Crecimiento de Fibroblastos/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Osteogénesis/genética , Base del Cráneo/crecimiento & desarrollo , Animales , Atlas Cervical/crecimiento & desarrollo , Condrocitos/metabolismo , Condrogénesis/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Factores de Crecimiento de Fibroblastos/genética , Genes Homeobox/fisiología , Proteínas de Homeodominio/genética , Hibridación in Situ , Factor de Transcripción MSX1/biosíntesis , Factor de Transcripción MSX1/genética , Ratones , Osteoblastos/metabolismo , Hipófisis/crecimiento & desarrollo
17.
J Mol Histol ; 36(5): 367-72, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16195809

RESUMEN

The Dickkopf family is important for embryogenesis and postnatal development and growth. Dkk1 is a strong head inducer and knockout of this gene leads to absence of anterior head structures, which are predominantly formed through neural crest migration. During early craniofacial development, Dkk1 to Dkk3 show developmentally regulated expression in a number of elements. However, their expression and roles in late times of craniofacial development are largely unknown. This study focuses on the expression profile of Dkk1-3 on late embryonic and early postnatal stages. It was found that Dkks were involved in a variety of craniofacial developmental processes, including facial outgrowth, myogenesis, osteogenesis, palatogenesis, olfactory epithelium and tooth development; and the expression persisted to postnatal stage in the muscles and bones. Their expression patterns suggest important roles in these processes; further study is warranted to elucidate these roles.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Desarrollo Maxilofacial , Cráneo/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Ratones
18.
J Mol Histol ; 36(6-7): 419-26, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16521043

RESUMEN

The Dickkopf (Dkk) family and Mmp9 are important for apoptosis and a number of other developmental processes. However, little is known about their roles in the development of cranial base, which is an important structure for coordinated development and growth of the craniofacial skeletons. In order to establish whether and in what way these genes are involved in cranial base development, we examined their expression patterns and cell apoptosis. Dkk1 was first seen in the perichondral mesenchyme in restricted domains from E14, and later in the migrating mesenchymal cells within the cartilage. Thereafter, it was widespread throughout the bones of the cranial base. The expression was downregulated in postnatal stages. Dkk2 was localized in the perichondral mesenchyme outlining the anterior cranial base in embryogenesis. Dkk3 was mainly detected in the occipital-vertebral joint at E13 and E14. Mmp9 transcripts were clustered in the inner layer of perichondral mesenchyme, juxtaposed with the terminally differentiated hypertrophic chondrocytes from E14. Later Mmp9-expressing cells were found at the sites of chondrocyte apoptosis. This was particularly clear at the distal ends of the synchondroses. These data indicate that Mmp9 regulates skeletogenesis in cranial base in a manner that is largely similar to that of the appendicular skeletons. Expression of Dkks suggests other roles that remain to be defined.


Asunto(s)
Apoptosis , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Hibridación in Situ , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Base del Cráneo/citología , Base del Cráneo/embriología , Base del Cráneo/enzimología
19.
Anat Rec A Discov Mol Cell Evol Biol ; 286(2): 891-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16145660

RESUMEN

The cranial base, located between the cranial vault and the facial bones, plays an important role in integrated craniofacial development and growth. Transgenic Shh and Sox9-deficient mice show similar defects in cranial base patterning. Therefore, in order to examine potential interactions of Shh, Ihh, another member of the Hh family, and Sox9 during cranial base development and growth, we investigated their cellular mRNA expression domains in the embryonic (E) and early postnatal (PN) cranial base from E10 to PN5 using sectional radioactive 35-S in situ hybridization. Of the Hhs, Shh was observed in the foregut epithelium and the notochord, while Sox9 showed broad expression in the loose mesenchyme of the cranial base area during E10-E11. Subsequently, from E12 onward, all genes were observed in the developing cranial base, and after birth the genes were prominently colocalized in the prehypertrophic chondrocytes of the synchondroses. Collectively, these data suggest that Hh-Sox9 auto- and paracrine signaling interactions may provide a critical mechanism for regulating the patterning of the cranial base as well as for its development and growth.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Osteogénesis/genética , Base del Cráneo/embriología , Base del Cráneo/crecimiento & desarrollo , Transactivadores/genética , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Desarrollo Óseo/genética , Huesos/embriología , Huesos/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario , Edad Gestacional , Proteínas Hedgehog , Proteínas del Grupo de Alta Movilidad/metabolismo , Hibridación in Situ , Ratones , Ratones Endogámicos , ARN Mensajero/metabolismo , Factor de Transcripción SOX9 , Base del Cráneo/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
20.
Anat Embryol (Berl) ; 210(2): 125-32, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16151852

RESUMEN

The Fgf/Fgfr (Fgf receptor) and Bmp signal pathways are critical for embryonic development and postnatal growth. In order to address their roles in tongue development, preliminary study of expression patterns of some important members in the two families, as well as of apoptosis and proliferation, were carried out in mouse developing tongue. Apoptosis in tongue is a very late event in embryogenesis, restricted to the upper layer of the epithelium whereas proliferation is very vigorous at the early stage of tongue development and remains active throughout embryogenesis. Bmp2, -4 and -5 were localized within the mesenchyme at the early embryonic stage of tongue development (E12 to E13), whereas Bmp3 and Bmp7 were mainly expressed in the epithelium. Most of these molecules were also seen in the tongue muscles at postnatal stages. Among Fgfr isoforms, Fgfr1c, -2b, and -2c were detected in embryogenesis with peak expression at E11 to E13. Fgfr1c and Fgfr2c were localized within the mesenchyme, while Fgfr2b was mainly expressed in the epithelium. High expression of Fgf7 and Fgf10 was also detected in the mesenchyme at the early embryonic stage of tongue development, corresponding to the Fgfr expression, suggesting that they are among the principal ligands functioning at the early embryonic expanding stage. Fgf2 was seen in the tongue muscles at the late embryonic and postnatal stages. These results suggest that Bmp and Fgf signalling regulates tongue development at multiple stages, possibly related to proliferation and differentiation.


Asunto(s)
Apoptosis , Receptores de Proteínas Morfogenéticas Óseas/fisiología , Regulación del Desarrollo de la Expresión Génica , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Lengua/embriología , Animales , Proliferación Celular , Factores de Crecimiento de Fibroblastos/fisiología , Ratones/embriología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA