Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(11): e3002393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38015826

RESUMEN

Human cognition and action can be influenced by internal bodily processes such as heartbeats. For instance, somatosensory perception is impaired both during the systolic phase of the cardiac cycle and when heartbeats evoke stronger cortical responses. Here, we test whether these cardiac effects originate from overall changes in cortical excitability. Cortical and corticospinal excitability were assessed using electroencephalographic and electromyographic responses to transcranial magnetic stimulation while concurrently monitoring cardiac activity with electrocardiography. Cortical and corticospinal excitability were found to be highest during systole and following stronger neural responses to heartbeats. Furthermore, in a motor task, hand-muscle activity and the associated desynchronization of sensorimotor oscillations were stronger during systole. These results suggest that systolic cardiac signals have a facilitatory effect on motor excitability-in contrast to sensory attenuation that was previously reported for somatosensory perception. Thus, it is possible that distinct time windows exist across the cardiac cycle, optimizing either perception or action.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Humanos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Mano/fisiología , Electroencefalografía , Estimulación Magnética Transcraneal/métodos
2.
J Neurosci ; 43(23): 4341-4351, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160362

RESUMEN

Many movements in daily life are embedded in motion sequences that involve more than one limb, demanding the motor system to monitor and control different body parts in quick succession. During such movements, systematic changes in the environment or the body might require motor adaptation of specific segments. However, previous motor adaptation research has focused primarily on motion sequences produced by a single limb, or on simultaneous movements of several limbs. For example, adaptation to opposing force fields is possible in unimanual reaching tasks when the direction of a prior or subsequent movement is predictive of force field direction. It is unclear, however, whether multilimb sequences can support motor adaptation processes in a similar way. In the present study (38 females, 38 males), we investigated whether reaches can be adapted to different force fields in a bimanual motor sequence when the information about the perturbation is associated with the prior movement direction of the other arm. In addition, we examined whether prior perceptual (visual or proprioceptive) feedback of the opposite arm contributes to force field-specific motor adaptation. Our key finding is that only active participation in the bimanual sequential task supports pronounced adaptation. This result suggests that active segments in bimanual motion sequences are linked across limbs. If there is a consistent association between movement kinematics of the linked and goal movement, the learning process of the goal movement can be facilitated. More generally, if motion sequences are repeated often, prior segments can evoke specific adjustments of subsequent movements.SIGNIFICANCE STATEMENT Movements in a limb's motion sequence can be adjusted based on linked movements. A prerequisite is that kinematics of the linked movements correctly predict which adjustments are needed. We show that use of kinematic information to improve performance is even possible when a prior linked movement is performed with a different limb. For example, a skilled juggler might have learned how to correctly adjust his catching movement of the left hand when the right hand performed a throwing action in a specific way. Linkage is possibly a key mechanism of the human motor system for learning complex bimanual skills. Our study emphasizes that learning of specific movements should not be studied in isolation but within their motor sequence context.


Asunto(s)
Mano , Aprendizaje , Masculino , Femenino , Humanos , Aprendizaje/fisiología , Mano/fisiología , Adaptación Fisiológica/fisiología , Movimiento/fisiología , Movimiento (Física) , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología
3.
Neuroimage ; 268: 119810, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587708

RESUMEN

While many structural and biochemical changes in the brain have previously been associated with older age, findings concerning functional properties of neuronal networks, as reflected in their electrophysiological signatures, remain rather controversial. These discrepancies might arise due to several reasons, including diverse factors determining general spectral slowing in the alpha frequency range as well as amplitude mixing between the rhythmic and non-rhythmic parameters. We used a large dataset (N = 1703, mean age 70) to comprehensively investigate age-related alterations in multiple EEG biomarkers taking into account rhythmic and non-rhythmic activity and their individual contributions to cognitive performance. While we found strong evidence for an individual alpha peak frequency (IAF) decline in older age, we did not observe a significant relationship between theta power and age while controlling for IAF. Not only did IAF decline with age, but it was also positively associated with interference resolution in a working memory task primarily in the right and left temporal lobes suggesting its functional role in information sampling. Critically, we did not detect a significant relationship between alpha power and age when controlling for the 1/f spectral slope, while the latter one showed age-related alterations. These findings thus suggest that the entanglement of IAF slowing and power in the theta frequency range, as well as 1/f slope and alpha power measures, might explain inconsistencies reported previously in the literature. Finally, despite the absence of age-related alterations, alpha power was negatively associated with the speed of processing in the right frontal lobe while 1/f slope showed no consistent relationship to cognitive performance. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered for the comprehensive assessment of association between age, neuronal activity, and cognitive performance.


Asunto(s)
Cognición , Electroencefalografía , Humanos , Anciano , Cognición/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Fenómenos Electrofisiológicos
4.
PLoS Comput Biol ; 18(7): e1010272, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35802619

RESUMEN

Ongoing oscillations and evoked responses are two main types of neuronal activity obtained with diverse electrophysiological recordings (EEG/MEG/iEEG/LFP). Although typically studied separately, they might in fact be closely related. One possibility to unite them is to demonstrate that neuronal oscillations have non-zero mean which predicts that stimulus- or task-triggered amplitude modulation of oscillations can contribute to the generation of evoked responses. We validated this mechanism using computational modelling and analysis of a large EEG data set. With a biophysical model, we indeed demonstrated that intracellular currents in the neuron are asymmetric and, consequently, the mean of alpha oscillations is non-zero. To understand the effect that neuronal currents exert on oscillatory mean, we varied several biophysical and morphological properties of neurons in the network, such as voltage-gated channel densities, length of dendrites, and intensity of incoming stimuli. For a very large range of model parameters, we observed evidence for non-zero mean of oscillations. Complimentary, we analysed empirical rest EEG recordings of 90 participants (50 young, 40 elderly) and, with spatio-spectral decomposition, detected at least one spatially-filtred oscillatory component of non-zero mean alpha oscillations in 93% of participants. In order to explain a complex relationship between the dynamics of amplitude-envelope and corresponding baseline shifts, we performed additional simulations with simple oscillators coupled with different time delays. We demonstrated that the extent of spatial synchronisation may obscure macroscopic estimation of alpha rhythm modulation while leaving baseline shifts unchanged. Overall, our results predict that amplitude modulation of neural oscillations should at least partially explain the generation of evoked responses. Therefore, inference about changes in evoked responses with respect to cognitive conditions, age or neuropathologies should be constructed while taking into account oscillatory neuronal dynamics.


Asunto(s)
Ritmo alfa , Neuronas , Anciano , Electroencefalografía/métodos , Humanos , Neuronas/fisiología
5.
Proc Natl Acad Sci U S A ; 117(19): 10575-10584, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341167

RESUMEN

Even though humans are mostly not aware of their heartbeats, several heartbeat-related effects have been reported to influence conscious perception. It is not clear whether these effects are distinct or related phenomena, or whether they are early sensory effects or late decisional processes. Combining electroencephalography and electrocardiography, along with signal detection theory analyses, we identify two distinct heartbeat-related influences on conscious perception differentially related to early vs. late somatosensory processing. First, an effect on early sensory processing was found for the heartbeat-evoked potential (HEP), a marker of cardiac interoception. The amplitude of the prestimulus HEP negatively correlated with localization and detection of somatosensory stimuli, reflecting a more conservative detection bias (criterion). Importantly, higher HEP amplitudes were followed by decreases in early (P50) as well as late (N140, P300) somatosensory-evoked potential (SEP) amplitudes. Second, stimulus timing along the cardiac cycle also affected perception. During systole, stimuli were detected and correctly localized less frequently, relating to a shift in perceptual sensitivity. This perceptual attenuation was accompanied by the suppression of only late SEP components (P300) and was stronger for individuals with a more stable heart rate. Both heart-related effects were independent of alpha oscillations' influence on somatosensory processing. We explain cardiac cycle timing effects in a predictive coding account and suggest that HEP-related effects might reflect spontaneous shifts between interoception and exteroception or modulations of general attentional resources. Thus, our results provide a general conceptual framework to explain how internal signals can be integrated into our conscious perception of the world.


Asunto(s)
Frecuencia Cardíaca/fisiología , Interocepción/fisiología , Percepción/fisiología , Adulto , Atención/fisiología , Concienciación/fisiología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estado de Conciencia/fisiología , Electrocardiografía/métodos , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Corazón/fisiología , Humanos , Masculino , Corteza Somatosensorial/fisiología
6.
Neuroimage ; 253: 119093, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35288283

RESUMEN

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Encéfalo , Mapeo Encefálico , Electrodos , Humanos
7.
Neuroimage ; 252: 119053, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247548

RESUMEN

Cross-frequency synchronization (CFS) has been proposed as a mechanism for integrating spatially and spectrally distributed information in the brain. However, investigating CFS in Magneto- and Electroencephalography (MEG/EEG) is hampered by the presence of spurious neuronal interactions due to the non-sinusoidal waveshape of brain oscillations. Such waveshape gives rise to the presence of oscillatory harmonics mimicking genuine neuronal oscillations. Until recently, however, there has been no methodology for removing these harmonics from neuronal data. In order to address this long-standing challenge, we introduce a novel method (called HARMOnic miNImization - Harmoni) that removes the signal components which can be harmonics of a non-sinusoidal signal. Harmoni's working principle is based on the presence of CFS between harmonic components and the fundamental component of a non-sinusoidal signal. We extensively tested Harmoni in realistic EEG simulations. The simulated couplings between the source signals represented genuine and spurious CFS and within-frequency phase synchronization. Using diverse evaluation criteria, including ROC analyses, we showed that the within- and cross-frequency spurious interactions are suppressed significantly, while the genuine activities are not affected. Additionally, we applied Harmoni to real resting-state EEG data revealing intricate remote connectivity patterns which are usually masked by the spurious connections. Given the ubiquity of non-sinusoidal neuronal oscillations in electrophysiological recordings, Harmoni is expected to facilitate novel insights into genuine neuronal interactions in various research fields, and can also serve as a steppingstone towards the development of further signal processing methods aiming at refining within- and cross-frequency synchronization in electrophysiological recordings.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Humanos , Magnetoencefalografía/métodos , Neuronas/fisiología , Procesamiento de Señales Asistido por Computador
8.
Neuroimage ; 247: 118746, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34875382

RESUMEN

The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.


Asunto(s)
Ondas Encefálicas/fisiología , Estimulación Luminosa/métodos , Adulto , Percepción Auditiva/fisiología , Encéfalo/fisiología , Discriminación en Psicología/fisiología , Epilepsia Refractaria/fisiopatología , Electroencefalografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Tiempo de Reacción , Percepción Visual/fisiología
9.
Hum Brain Mapp ; 43(6): 1868-1881, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35064716

RESUMEN

Neural health relies on cortical excitation-inhibition balance (EIB). Previous research suggests a link between increased cortical excitation and neuroplasticity induced by selective serotonin reuptake inhibitors (SSRIs). Whether there are modulations of EIB following SSRI-administration in the healthy human brain, however, remains unclear. Thus, in a randomized double-blind study, we administered a clinically relevant dose of 20 mg escitalopram for 7 days (time when steady state is achieved) in 59 healthy women (28 escitalopram, 31 placebo) on oral contraceptives. We acquired resting-state electroencephalography data at baseline, after a single dose, and at steady state. We assessed 1/f slope of the power spectrum as a marker of EIB, compared individual trajectories of 1/f slope changes contrasting single dose and 1-week drug intake, and tested the relationship of escitalopram plasma levels and cortical excitatory and inhibitory balance shifts. Escitalopram-intake was associated with decreased 1/f slope, indicating an EIB shift in favor of excitation. Furthermore, 1/f slope at baseline and after a single dose of escitalopram was associated with 1/f slope at steady state. Higher plasma escitalopram levels at a single dose were associated with better maintenance of these EIB changes throughout the drug administration week. These findings demonstrate the potential for 1/f slope to predict individual cortical responsivity to SSRIs and widen the lens through which we map the human brain by testing an interventional psychopharmacological design in a clearly defined endocrinological state.


Asunto(s)
Citalopram , Escitalopram , Encéfalo/diagnóstico por imagen , Citalopram/farmacología , Método Doble Ciego , Femenino , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
10.
Brain ; 144(2): 487-503, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257940

RESUMEN

Abnormal phase-amplitude coupling between ß and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. ß and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the ß and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between ß and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.


Asunto(s)
Ritmo beta , Corteza Cerebral/fisiopatología , Ritmo Gamma , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Cuero Cabelludo , Procesamiento de Señales Asistido por Computador
11.
J Neurosci ; 40(34): 6572-6583, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32719161

RESUMEN

Brain responses vary considerably from moment to moment, even to identical sensory stimuli. This has been attributed to changes in instantaneous neuronal states determining the system's excitability. Yet the spatiotemporal organization of these dynamics remains poorly understood. Here we test whether variability in stimulus-evoked activity can be interpreted within the framework of criticality, which postulates dynamics of neural systems to be tuned toward the phase transition between stability and instability as is reflected in scale-free fluctuations in spontaneous neural activity. Using a novel noninvasive approach in 33 male human participants, we tracked instantaneous cortical excitability by inferring the magnitude of excitatory postsynaptic currents from the N20 component of the somatosensory evoked potential. Fluctuations of cortical excitability demonstrated long-range temporal dependencies decaying according to a power law across trials, a hallmark of systems at critical states. As these dynamics covaried with changes in prestimulus oscillatory activity in the alpha band (8-13 Hz), we establish a mechanistic link between ongoing and evoked activity through cortical excitability and argue that the co-emergence of common temporal power laws may indeed originate from neural networks poised close to a critical state. In contrast, no signatures of criticality were found in subcortical or peripheral nerve activity. Thus, criticality may represent a parsimonious organizing principle of variability in stimulus-related brain processes on a cortical level, possibly reflecting a delicate equilibrium between robustness and flexibility of neural responses to external stimuli.SIGNIFICANCE STATEMENT Variability of neural responses in primary sensory areas is puzzling, as it is detrimental to the exact mapping between stimulus features and neural activity. However, such variability can be beneficial for information processing in neural networks if it is of a specific nature, namely, if dynamics are poised at a so-called critical state characterized by a scale-free spatiotemporal structure. Here, we demonstrate the existence of a link between signatures of criticality in ongoing and evoked activity through cortical excitability, which fills the long-standing gap between two major directions of research on neural variability: the impact of instantaneous brain states on stimulus processing on the one hand and the scale-free organization of spatiotemporal network dynamics of spontaneous activity on the other.


Asunto(s)
Ritmo alfa , Excitabilidad Cortical , Potenciales Evocados Somatosensoriales , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Estimulación Eléctrica , Humanos , Masculino , Nervio Mediano/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
12.
J Physiol ; 599(9): 2419-2434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31647122

RESUMEN

KEY POINTS: Embodiment of a virtual body was induced and its movements were controlled by two different brain-computer interface (BCI) paradigms - one based on signals from sensorimotor versus one from visual cortical areas. BCI-control of movements engenders agency, but not equally for all paradigms. Cortical sensorimotor activation correlates with agency and responsibility. This has significant implications for neurological rehabilitation and neuroethics. ABSTRACT: Agency is the attribution of an action to the self and is a prerequisite for experiencing responsibility over its consequences. Here we investigated agency and responsibility by studying the control of movements of an embodied avatar, via brain-computer interface (BCI) technology, in immersive virtual reality. After induction of virtual body ownership by visuomotor correlations, healthy participants performed a motor task with their virtual body. We compared the passive observation of the subject's 'own' virtual arm performing the task with (1) the control of the movement through activation of sensorimotor areas (motor imagery) and (2) the control of the movement through activation of visual areas (steady-state visually evoked potentials). The latter two conditions were carried out using a BCI and both shared the intention and the resulting action. We found that BCI-control of movements engenders the sense of agency, which is strongest for sensorimotor area activation. Furthermore, increased activity of sensorimotor areas, as measured using EEG, correlates with levels of agency and responsibility. We discuss the implications of these results for the neural basis of agency.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Sensoriomotora , Electroencefalografía , Potenciales Evocados , Humanos , Movimiento
13.
Stroke ; 52(1): 241-249, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33317414

RESUMEN

BACKGROUND AND PURPOSE: Despite continuing efforts in the multimodal assessment of the motor system after stroke, conclusive findings on the complementarity of functional and structural metrics of the ipsilesional corticospinal tract integrity and the role of the contralesional hemisphere are still lacking. This research aimed to find the best combination of motor system metrics, allowing the classification of patients into 3 predefined groups of upper limb motor recovery. METHODS: We enrolled 35 chronic ischemic stroke patients (mean 47 [26-66] years old, 29 [6-58] months poststroke) with a single supratentorial lesion and unilateral upper extremity weakness. Patients were divided into 3 groups, depending on upper limb motor recovery: good, moderate, and bad. Nonparametric statistical tests and regression analysis were used to investigate the relationships among microstructural (fractional anisotropy (FA) ratio of the corticospinal tracts at the internal capsule (IC) level (classic method) and along the length of the tracts (Fréchet distance), and of the corpus callosum) and functional (motor evoked potentials [MEPs] for 2 hand muscles) motor system metrics. Stratification rules were also tested using a decision tree classifier. RESULTS: IC FA ratio in the IC and MEP absence were both equally discriminative of the bad motor outcome (96% accuracy). For the 3 recovery groups' classification, the best parameter combination was IC FA ratio and the Fréchet distance between the contralesional and ipsilesional corticospinal tract FA profiles (91% accuracy). No other metrics had any additional value for patients' classification. MEP presence differed for 2 investigated muscles. CONCLUSIONS: This study demonstrates that better separation between 3 motor recovery groups may be achieved when considering the similarity between corticospinal tract FA profiles along its length in addition to region of interest-based assessment and lesion load calculation. Additionally, IC FA ratio and MEP absence are equally important markers for poor recovery, while for MEP probing it may be important to investigate more than one hand muscle.


Asunto(s)
Accidente Cerebrovascular Isquémico/fisiopatología , Trastornos del Movimiento/fisiopatología , Adulto , Anciano , Anisotropía , Enfermedad Crónica , Imagen de Difusión Tensora , Potenciales Evocados Motores , Femenino , Lateralidad Funcional , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/etiología , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología , Desempeño Psicomotor , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiopatología , Recuperación de la Función , Extremidad Superior/fisiopatología
14.
Neuroimage ; 238: 118247, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111514

RESUMEN

Our perception of the external world is influenced by internal bodily signals. For example, we recently showed that timing of stimulation along the cardiac cycle and spontaneous fluctuations of heartbeat-evoked potential (HEP) amplitudes influence somatosensory perception and the associated neural processing (Al et al., 2020). While cardiac phase affected detection sensitivity and late components of the somatosensory-evoked potentials (SEPs), HEP amplitudes affected detection criterion and both early and late SEP components. In a new EEG study, we investigate whether these results are replicable in a modified paradigm, which includes two succeeding temporal intervals. In one of the intervals, subjects received a weak electrical finger stimulation and reported first whether they detected any stimulation and then allocated the stimulus to one of the two intervals. Our results confirm the previously reported cardiac cycle and prestimulus HEP effects on somatosensory perception and evoked potentials. In addition, we obtained two new findings. Source analyses in this and our original study show that the increased likelihood of conscious perception goes along with HEP fluctuations in parietal and posterior cingulate regions, known to play important roles in interoceptive processes. Furthermore, HEP amplitudes were shown to decrease when subjects engaged in the somatosensory task compared to a resting state condition. Our findings are consistent with the view that HEP amplitudes are a marker of interoceptive (versus exteroceptive) attention and provide a neural underpinning for this view.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Potenciales Evocados/fisiología , Frecuencia Cardíaca/fisiología , Interocepción/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Concienciación/fisiología , Estado de Conciencia/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
15.
Neuroimage ; 243: 118512, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455060

RESUMEN

The prevalence of Parkinson's disease (PD) increases with aging and both processes share similar cellular mechanisms and alterations in the dopaminergic system. Yet it remains to be investigated whether aging can also demonstrate electrophysiological neuronal signatures typically associated with PD. Previous work has shown that phase-amplitude coupling (PAC) between the phase of beta oscillations and the amplitude of gamma oscillations as well as beta bursts features can serve as electrophysiological biomarkers for PD. Here we hypothesize that these metrics are also present in apparently healthy elderly subjects. Using resting state multichannel EEG measurements, we show that PAC between beta oscillation and broadband gamma activity (50-150 Hz) is elevated in a group of elderly (59-77 years) compared to young volunteers (20-35 years) without PD. Importantly, the increase of PAC is statistically significant even after ruling out confounds relating to changes in spectral power and non-sinusoidal shape of beta oscillation. Moreover, a trend for a higher percentage of longer beta bursts (> 0.2 s) along with the increase in their incidence rate is also observed for elderly subjects. Using inverse modeling, we further show that elevated PAC and longer beta bursts are most pronounced in the sensorimotor areas. Moreover, we show that PAC and longer beta bursts might reflect distinct mechanisms, since their spatial patterns only partially overlap and the correlation between them is weak. Taken together, our findings provide novel evidence that electrophysiological biomarkers of PD may already occur in apparently healthy elderly subjects. We hypothesize that PAC and beta bursts characteristics in aging might reflect a pre-clinical state of PD and suggest their predictive value to be tested in prospective longitudinal studies.


Asunto(s)
Envejecimiento Saludable/fisiología , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Ritmo beta/fisiología , Biomarcadores , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Núcleo Subtalámico/fisiopatología , Adulto Joven
16.
Hum Brain Mapp ; 42(8): 2508-2528, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682975

RESUMEN

The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.


Asunto(s)
Mapeo Encefálico/normas , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal/normas , Adulto , Mapeo Encefálico/métodos , Electromiografía , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Adulto Joven
17.
Mov Disord ; 36(4): 927-937, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33247603

RESUMEN

BACKGROUND: Levodopa is the most efficacious drug in the symptomatic therapy of motor symptoms in Parkinson's disease (PD); however, long-term treatment is often complicated by troublesome levodopa-induced dyskinesia (LID). Recent evidence suggests that LID might be related to increased cortical gamma oscillations. OBJECTIVE: The objective of this study was to test the hypothesis that cortical high-gamma network activity relates to LID in the 6-hydroxydopamine model and to identify new biomarkers for adaptive deep brain stimulation (DBS) therapy in PD. METHODS: We recorded and analyzed primary motor cortex (M1) electrocorticogram data and motor behavior in freely moving 6-OHDA lesioned rats before and during a daily treatment with levodopa for 3 weeks. The results were correlated with the abnormal involuntary movement score (AIMS) and used for generalized linear modeling (GLM). RESULTS: Levodopa reverted motor impairment, suppressed beta activity, and, with repeated administration, led to a progressive enhancement of LID. Concurrently, we observed a highly significant stepwise amplitude increase in finely tuned gamma (FTG) activity and gamma centroid frequency. Whereas AIMS and FTG reached their maximum after the 4th injection and remained on a stable plateau thereafter, the centroid frequency of the FTG power continued to increase thereafter. Among the analyzed gamma activity parameters, the fraction of longest gamma bursts showed the strongest correlation with AIMS. Using a GLM, it was possible to accurately predict AIMS from cortical recordings. CONCLUSIONS: FTG activity is tightly linked to LID and should be studied as a biomarker for adaptive DBS. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Antiparkinsonianos/efectos adversos , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/etiología , Levodopa/efectos adversos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas
18.
Neuroimage ; 211: 116599, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32035185

RESUMEN

Cross-frequency coupling (CFC) between neuronal oscillations reflects an integration of spatially and spectrally distributed information in the brain. Here, we propose a novel framework for detecting such interactions in Magneto- and Electroencephalography (MEG/EEG), which we refer to as Nonlinear Interaction Decomposition (NID). In contrast to all previous methods for separation of cross-frequency (CF) sources in the brain, we propose that the extraction of nonlinearly interacting oscillations can be based on the statistical properties of their linear mixtures. The main idea of NID is that nonlinearly coupled brain oscillations can be mixed in such a way that the resulting linear mixture has a non-Gaussian distribution. We evaluate this argument analytically for amplitude-modulated narrow-band oscillations which are either phase-phase or amplitude-amplitude CF coupled. We validated NID extensively with simulated EEG obtained with realistic head modelling. The method extracted nonlinearly interacting components reliably even at SNRs as small as -15 dB. Additionally, we applied NID to the resting-state EEG of 81 subjects to characterize CF phase-phase coupling between alpha and beta oscillations. The extracted sources were located in temporal, parietal and frontal areas, demonstrating the existence of diverse local and distant nonlinear interactions in resting-state EEG data. All codes are available publicly via GitHub.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Conectoma/métodos , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Modelos Teóricos , Simulación por Computador , Conectoma/normas , Electroencefalografía/normas , Humanos , Magnetoencefalografía/normas
19.
J Neurophysiol ; 124(4): 1045-1055, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816612

RESUMEN

Coordination of functionally coupled muscles is a key aspect of movement execution. Demands on coordinative control increase with the number of involved muscles and joints, as well as with differing movement periods within a given motor sequence. While previous research has provided evidence concerning inter- and intramuscular synchrony in isolated movements, compound movements remain largely unexplored. With this study, we aimed to uncover neural mechanisms of bilateral coordination through intermuscular coherence (IMC) analyses between principal homologous muscles during bipedal squatting (BpS) at multiple frequency bands (alpha, beta, and gamma). For this purpose, participants performed bipedal squats without additional load, which were divided into three distinct movement periods (eccentric, isometric, and concentric). Surface electromyography (EMG) was recorded from four homologous muscle pairs representing prime movers during bipedal squatting. We provide novel evidence that IMC magnitudes differ between movement periods in beta and gamma bands, as well as between homologous muscle pairs across all frequency bands. IMC was greater in the muscle pairs involved in postural and bipedal stability compared with those involved in muscular force during BpS. Furthermore, beta and gamma IMC magnitudes were highest during eccentric movement periods, whereas we did not find movement-related modulations for alpha IMC magnitudes. This finding thus indicates increased integration of afferent information during eccentric movement periods. Collectively, our results shed light on intermuscular synchronization during bipedal squatting, as we provide evidence that central nervous processing of bilateral intermuscular functioning is achieved through task-dependent modulations of common neural input to homologous muscles.NEW & NOTEWORTHY It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Adulto , Lateralidad Funcional , Humanos , Pierna/fisiología , Masculino , Contracción Muscular , Músculo Esquelético/inervación , Equilibrio Postural
20.
Hum Brain Mapp ; 41(5): 1136-1152, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31750607

RESUMEN

Much of our behaviour is driven by two motivational dimensions-approach and avoidance. These have been related to frontal hemispheric asymmetries in clinical and resting-state EEG studies: Approach was linked to higher activity of the left relative to the right hemisphere, while avoidance was related to the opposite pattern. Increased approach behaviour, specifically towards unhealthy foods, is also observed in obesity and has been linked to asymmetry in the framework of the right-brain hypothesis of obesity. Here, we aimed to replicate previous EEG findings of hemispheric asymmetries for self-reported approach/avoidance behaviour and to relate them to eating behaviour. Further, we assessed whether resting fMRI hemispheric asymmetries can be detected and whether they are related to approach/avoidance, eating behaviour and BMI. We analysed three samples: Sample 1 (n = 117) containing EEG and fMRI data from lean participants, and Samples 2 (n = 89) and 3 (n = 152) containing fMRI data from lean, overweight and obese participants. In Sample 1, approach behaviour in women was related to EEG, but not to fMRI hemispheric asymmetries. In Sample 2, approach/avoidance behaviours were related to fMRI hemispheric asymmetries. Finally, hemispheric asymmetries were not related to either BMI or eating behaviour in any of the samples. Our study partly replicates previous EEG findings regarding hemispheric asymmetries and indicates that this relationship could also be captured using fMRI. Our findings suggest that eating behaviour and obesity are likely to be mediated by mechanisms not directly relating to frontal asymmetries in neuronal activation quantified with EEG and fMRI.


Asunto(s)
Reacción de Prevención/fisiología , Índice de Masa Corporal , Electroencefalografía , Conducta Alimentaria/fisiología , Lateralidad Funcional/fisiología , Imagen por Resonancia Magnética , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Obesidad/diagnóstico por imagen , Obesidad/psicología , Descanso , Caracteres Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA