Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Therm Biol ; 57: 1-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27033033

RESUMEN

The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16µm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259µm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3µm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs.


Asunto(s)
Evolución Biológica , Charadriiformes/genética , Cáscara de Huevo/fisiología , Rayos Infrarrojos , Aclimatación , Animales , Regulación de la Temperatura Corporal , Charadriiformes/fisiología , Temperatura
2.
Appl Opt ; 50(7): 999-1006, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21364723

RESUMEN

For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.

3.
Nanoscale ; 11(15): 7404-7413, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30938744

RESUMEN

Light scattering from small particles exhibit unique angular scattering distributions, which are strongly dependent on the radius to wavelength ratio as well as the refractive index contrast between the particles and the surrounding medium. As the concentration of the particles increases, multiple scattering becomes important. This complicates the description of the angular scattering patterns, and in many cases one has to resort to empirical phase functions. We have measured the angle dependence of light scattering from a polymer layer containing sub-micron metallic and dielectric particles. The samples exhibited strongly forward and backward peaked scattering patterns, which were fitted to a number of empirical approximative phase functions. We found that a novel two-term Reynolds-McCormick (TTRM) phase function gave the best fit to the experimental data in all cases. The feasibility of the TTRM approach was further validated by good agreement with numerical simulations of Mie single scattering phase functions at various wavelengths and sizes, ranging from the Rayleigh scattering regime to the geometrical optics regime. Hence, the widely adaptable TTRM approach is able to describe angular scattering distributions of different kinds of nanospheres and nanocomposites, both in the single scattering and multiple scattering regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA