Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(8): 1696-1698, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379514

RESUMEN

We detected highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in a domestic cat that lived near a duck farm infected by a closely related virus in France during December 2022. Enhanced surveillance of symptomatic domestic carnivores in contact with infected birds is recommended to prevent further spread to mammals and humans.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Gatos , Subtipo H5N1 del Virus de la Influenza A/genética , Aves , Patos , Francia/epidemiología , Filogenia , Mamíferos
2.
Emerg Infect Dis ; 27(2): 508-516, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496244

RESUMEN

We detected 3 genotypes of highly pathogenic avian influenza A(H5N8) virus in France during winter 2016-17. Genotype A viruses caused dramatic economic losses in the domestic duck farm industry in southwestern France. Our phylogenetic analysis suggests that genotype A viruses formed 5 distinct geographic clusters in southwestern France. In some clusters, local secondary transmission might have been started by a single introduction. The intensity of the viral spread seems to correspond to the density of duck holdings in each production area. To avoid the introduction of disease into an unaffected area, it is crucial that authorities limit the movements of potentially infected birds.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Francia/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
3.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33008818

RESUMEN

Infections by A/H5 and A/H7 avian influenza viruses (AIVs) can cause acute disease and are therefore notifiable in poultry and wild birds. During winter 2015-2016, several cases of infection caused by highly pathogenic (HP) AIVs belonging to the A/H5N1, A/H5N2, and A/H5N9 subtypes were detected in southwestern France. Throughout winter 2016-2017, several cases of infections caused mainly by A/H5N8 HP AIV (A/goose/GD/1/1996, clade 2.3.4.4) were detected across Europe. On both occasions, the viruses were widely detected on palmiped farms in France. This study was designed to evaluate the persistence of A/H5 HP AIV in slurry from various duck productions. This was achieved (i) in the laboratory setting by artificially spiking four AIV-free slurry samples with known amounts of A/H5N9 HP AIV and monitoring virus infectivity, with or without lime treatment to achieve pH 10 or pH 12, and (ii) by sampling slurry tanks on five naturally A/H5N8 HP-contaminated farms. Experimental results in artificially spiked slurry suggested virus survival for 4 weeks in slurry from Muscovy or Pekin duck breeders and for 2 weeks in slurry from ducks for foie gras production during the assisted-feeding period, without lime treatment. Persistence of infectious A/H5N9 HP AIV in all slurry samples after lime treatment at pH 10 or pH 12 was less than 1 week. The A/H5N8 HP AIV persisted in naturally contaminated untreated slurry for 7 weeks. The results obtained provide experimental support for the 60-day storage period without treatment or the 7-day interval after lime treatment defined in French regulations for slurry sanitization.IMPORTANCE From November 2015 to July 2017, two successive episodes of H5 highly pathogenic avian influenza viruses (HP AIVs) infections occurred on poultry farms in France, mostly in domestic ducks raised for foie gras production in southwestern France. During the two epizootics, epidemiological investigations were carried out on infected farms and control and biosafety measures were implemented in association with surveillance in order to stop the spread of the viruses. Effluents are known to be an important factor in environmental dissemination of viruses, and suitable effluent management is needed to help prevent the spread of epizootics to other farms or pathogen persistence at the farm level. The present study was therefore designed to assess how long infectious A/H5 HP AIVs can persist in naturally or experimentally contaminated fecal slurry samples from ducks, with or without sanitization by lime treatment.


Asunto(s)
Compuestos de Calcio/farmacología , Control de Enfermedades Transmisibles/métodos , Patos , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/prevención & control , Óxidos/farmacología , Enfermedades de las Aves de Corral/prevención & control , Aguas Residuales/virología , Crianza de Animales Domésticos , Animales , Francia , Residuos Industriales , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología
5.
Emerg Infect Dis ; 24(12): 2270-2283, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457528

RESUMEN

We analyzed the highly pathogenic avian influenza (HPAI) H5 epizootic of 2016-17 in Europe by epidemiologic and genetic characteristics and compared it with 2 previous epizootics caused by the same H5 Guangdong lineage. The 2016-17 epizootic was the largest in Europe by number of countries and farms affected and greatest diversity of wild birds infected. We observed significant differences among the 3 epizootics regarding region affected, epidemic curve, seasonality, and outbreak duration, making it difficult to predict future HPAI epizootics. However, we know that in 2005-06 and 2016-17 the initial peak of wild bird detections preceded the peak of poultry outbreaks within Europe. Phylogenetic analysis of 2016-17 viruses indicates 2 main pathways into Europe. Our findings highlight the need for global surveillance of viral changes to inform disease preparedness, detection, and control.


Asunto(s)
Virus de la Influenza A/clasificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Europa (Continente)/epidemiología , Genoma Viral , Geografía Médica , Historia del Siglo XXI , Virus de la Influenza A/patogenicidad , Gripe Aviar/historia , Gripe Aviar/transmisión , Morbilidad , Mortalidad , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Análisis Espacio-Temporal , Zoonosis
6.
Euro Surveill ; 22(9)2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28277218

RESUMEN

Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Aves , Pollos , Brotes de Enfermedades , Patos , Francia/epidemiología , Genes Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , ARN Viral/genética , Análisis de Secuencia de ADN
7.
Virol J ; 11: 74, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24762011

RESUMEN

BACKGROUND: H5 low pathogenic avian influenza virus (LPAIV) infection in domestic ducks is a major problem in duck producing countries. Their silent circulation is an ongoing source of potential highly pathogenic or zoonotic emerging strains. To prevent such events, vaccination of domestic ducks might be attempted but remains challenging. Currently licensed vector vaccines derived from H5N1 HPAIV possess clade 0, clade 2.2 or clade 2.3.4 HA sequences: selection of the best HA candidate inducing the largest cross protection is a key issue. For this purpose, DNA immunization of specific pathogen free Muscovy ducks was performed using different synthetic codon optimized (opt) or native HA genes from H5N2 LPAIV and several H5N1 HPAIV clade 2.1, 2.2.1 and 2.3.4. Humoral cross-immunity was assessed 3 weeks after boost by hemagglutination inhibition (HI) and virus neutralization (VN) against three French H5 LPAIV antigens. FINDINGS: Vaccination with LP H5N2 HA induced the highest VN antibody titre against the homologous antigen; however, the corresponding HI titre was lower and comparable to HI titres obtained after immunization with opt HA derived from clades 2.3.4 or 2.1. Compared to the other HPAIV-derived constructs, vaccination with clade 2.3.4 opt HA consistently induced the highest antibody titres in HI and VN, when tested against all three H5 LPAIV antigens and H5N2 LPAIV, respectively: differences in titres against this last strain were statistically significant. CONCLUSION: The present study provides a standardized method to assess cross-immunity based on HA immunogenicity alone, and suggests that clade 2.3.4-derived recombinant vaccines might be the optimal candidates for further challenge testing to vaccinate domestic Muscovy ducks against H5 LPAIV.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas de ADN/inmunología , Animales , Protección Cruzada , Patos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/inmunología , Enfermedades de las Aves de Corral/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
8.
Viruses ; 16(1)2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257801

RESUMEN

From 2020 up to summer 2023, there was a substantial change in the situation concerning the high pathogenic avian influenza (HPAI) virus in Europe. This change concerned mainly virus circulation within wildlife, both in wild birds and wild mammals. It involved the seasonality of HPAI detections, the species affected, excess mortality events, and the apparent increased level of contamination in wild birds. The knock-on effect concerned new impacts and challenges for the poultry sector, which is affected by repeated annual waves of HPAI arriving with wild migratory birds and by risks due to viral circulation within resident wild birds across the year. Indeed, exceeding expectations, new poultry sectors and production areas have been affected during the recent HPAI seasons in France. The HPAI virus strains involved also generate considerable concern about human health because of enhanced risks of species barrier crossing. In this article, we present these changes in detail, along with the required adjustment of prevention, control, and surveillance strategies, focusing specifically on the situation in France.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Francia/epidemiología , Europa (Continente) , Animales Salvajes , Contaminación de Medicamentos , Virus de la Influenza A/genética , Mamíferos
9.
EFSA J ; 22(3): e8754, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38550271

RESUMEN

Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.

10.
EFSA J ; 21(1): e07786, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698491

RESUMEN

Between October 2021 and September 2022 Europe has suffered the most devastating highly pathogenic avian influenza (HPAI) epidemic with a total of 2,520 outbreaks in poultry, 227 outbreaks in captive birds, and 3,867 HPAI virus detections in wild birds. The unprecedent geographical extent (37 European countries affected) resulted in 50 million birds culled in affected establishments. In the current reporting period, between 10 September and 2 December 2022, 1,163 HPAI virus detections were reported in 27 European countries in poultry (398), captive (151) and wild birds (613). A decrease in HPAI virus detections in colony-breeding seabirds species and an increase in the number of detections in waterfowl has been observed. The continuous circulation of the virus in the wild reservoir has led to the frequent introduction of the virus into poultry populations. It is suspected that waterfowl might be more involved than seabirds in the incursion of HPAI virus into poultry establishments. In the coming months, the increasing infection pressure on poultry establishments might increase the risk of incursions in poultry, with potential further spread, primarily in areas with high poultry densities. The viruses detected since September 2022 (clade 2.3.4.4b) belong to eleven genotypes, three of which have circulated in Europe during the summer months, while eight represent new genotypes. HPAI viruses were also detected in wild and farmed mammal species in Europe and North America, showing genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N1) detections in humans in Spain, one A(H5N1), one A(H5N6) and one A(H9N2) human infection in China as well as one A(H5) infection without NA-type result in Vietnam were reported, respectively. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.

11.
EFSA J ; 21(10): e08328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37809353

RESUMEN

Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.

12.
EFSA J ; 21(7): e08191, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37485254

RESUMEN

Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).

13.
EFSA J ; 21(3): e07917, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36949860

RESUMEN

Between 3 December 2022 and 1 March 2023 highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b, was reported in Europe in domestic (522) and wild (1,138) birds over 24 countries. An unexpected number of HPAI virus detections in sea birds were observed, mainly in gull species and particularly in black-headed gulls (large mortality events were observed in France, Belgium, the Netherlands, and Italy). The close genetic relationship among viruses collected from black-headed gulls suggests a southward spread of the virus. Moreover, the genetic analyses indicate that the virus persisted in Europe in residential wild birds during and after the summer months. Although the virus retained a preferential binding for avian-like receptors, several mutations associated to increased zoonotic potential were detected. The risk of HPAI virus infection for poultry due to the virus circulating in black-headed gulls and other gull species might increase during the coming months, as breeding bird colonies move inland with possible overlap with poultry production areas. Worldwide, HPAI A(H5N1) virus continued to spread southward in the Americas, from Mexico to southern Chile. The Peruvian pelican was the most frequently reported infected species with thousands of deaths being reported. The reporting of HPAI A(H5N1) in mammals also continued probably linked to feeding on infected wild birds. In Peru, a mass mortality event of sea lions was observed in January and February 2023. Since October 2022, six A(H5N1) detections in humans were reported from Cambodia (a family cluster with 2 people, clade 2.3.2.1c), China (2, clade 2.3.4.4b), Ecuador (1, clade 2.3.4.4b), and Vietnam (1, unspecified clade), as well as two A(H5N6) human infections from China. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe is assessed as low for the general population in the EU/EEA, and low to moderate for occupationally or otherwise exposed people.

14.
EFSA J ; 21(6): e08039, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293570

RESUMEN

Between 2 March and 28 April 2023, highly pathogenic avian influenza (HPAI) A(H5Nx) virus, clade 2.3.4.4b, outbreaks were reported in domestic (106) and wild (610) birds across 24 countries in Europe. Poultry outbreaks occurred less frequently compared to the previous reporting period and compared to spring 2022. Most of these outbreaks were classified as primary outbreaks without secondary spread and some of them associated with atypical disease presentation, in particular low mortality. In wild birds, black-headed gulls continued to be heavily affected, while also other threatened wild bird species, such as the peregrine falcon, showed increased mortality. The ongoing epidemic in black-headed gulls, many of which breed inland, may increase the risk for poultry, especially in July-August, when first-year birds disperse from the breeding colonies. HPAI A(H5N1) virus also continued to expand in the Americas, including in mammalian species, and is expected to reach the Antarctic in the near future. HPAI virus infections were detected in six mammal species, particularly in marine mammals and mustelids, for the first time, while the viruses currently circulating in Europe retain a preferential binding for avian-like receptors. Since 13 March 2022 and as of 10 May 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from China (1), and Chile (1), as well as three A(H9N2) and one A(H3N8) human infections in China. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, and low to moderate for occupationally or otherwise exposed people.

15.
EFSA J ; 21(12): e8539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116102

RESUMEN

Between 2 September and 1 December 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (88) and wild (175) birds across 23 countries in Europe. Compared to previous years, the increase in the number of HPAI virus detections in waterfowl has been delayed, possibly due to a later start of the autumn migration of several wild bird species. Common cranes were the most frequently affected species during this reporting period with mortality events being described in several European countries. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds, with the exception of Hungary, where two clusters involving secondary spread occurred. HPAI viruses identified in Europe belonged to eleven different genotypes, seven of which were new. With regard to mammals, the serological survey conducted in all fur farms in Finland revealed 29 additional serologically positive farms during this reporting period. Wild mammals continued to be affected mostly in the Americas, from where further spread into wild birds and mammals in the Antarctic region was described for the first time. Since the last report and as of 1 December 2023, three fatal and one severe human A(H5N1) infection with clade 2.3.2.1c viruses have been reported by Cambodia, and one A(H9N2) infection was reported from China. No human infections related to the avian influenza detections in animals in fur farms in Finland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.

16.
Vaccine ; 41(1): 145-158, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36411134

RESUMEN

In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.


Asunto(s)
Patos , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Equidae , Hemaglutininas , Enfermedades de las Aves de Corral/prevención & control , Vacunas Sintéticas , Virulencia
17.
Transbound Emerg Dis ; 69(5): e1574-e1583, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35195353

RESUMEN

In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Brotes de Enfermedades/veterinaria , Patos , Francia/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Aves de Corral
18.
EFSA J ; 20(4): e07289, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386927

RESUMEN

Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.

19.
EFSA J ; 20(1): e07122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35079292

RESUMEN

The 2020-2021 avian influenza epidemic with a total of 3,777 reported highly pathogenic avian influenza (HPAI) detections and approximately 22,900,000 affected poultry birds in 31 European Countries appears to be one of the largest HPAI epidemics that has ever occurred in Europe. Between 15 May and 15 September 2021, 162 HPAI virus detections were reported in 17 EU/EEA countries and the UK in poultry (51), in wild (91) and captive birds (20). The detections in poultry were mainly reported by Kosovo (20), Poland (17) and Albania (6). HPAI virus was detected during the summer months in resident wild bird populations mainly in northern Europe. The data presented in this report indicates that HPAI virus is still circulating in domestic and wild bird populations in some European countries and that the epidemic is not over yet. Based on these observations, it appears that the persistence of HPAI A(H5) in Europe continues to pose a risk of further virus incursions in domestic bird populations. Furthermore, during summer, HPAI viruses were detected in poultry and several wild bird species in areas in Russia that are linked to key migration areas of wild waterbirds; this is of concern due to the possible introduction and spread of novel virus strains via wild birds migrating to the EU countries during the autumn from the eastern breeding to the overwintering sites. Nineteen different virus genotypes have been identified so far in Europe and Central Asia since July 2020, confirming a high propensity for this virus to undergo reassortment events. Since the last report, 15 human infections due to A(H5N6) HPAI and five human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus have been reported from China. Some of these cases were caused by a virus with an HA gene closely related to the A(H5) viruses circulating in Europe. The viruses characterised to date retain a preference for avian-type receptors; however, the reports of transmission events of A(H5) viruses to mammals and humans in Russia, as well as the recent A(H5N6) human cases in China may indicate a continuous risk of these viruses adapting to mammals. The risk of infection for the general population in the EU/EEA is assessed as very low, and for occupationally exposed people low, with large uncertainty due to the high diversity of circulating viruses in the bird populations.

20.
EFSA J ; 20(8): e07415, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949938

RESUMEN

The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest epidemic so far observed in Europe, with a total of 2,398 outbreaks in poultry, 46 million birds culled in the affected establishments, 168 detections in captive birds, and 2,733 HPAI events in wild birds in 36 European countries. Between 16 March and 10 June 2022, 1,182 HPAI virus detections were reported in 28 EU/EEA countries and United Kingdom in poultry (750), and in wild (410) and captive birds (22). During this reporting period, 86% of the poultry outbreaks were secondary due to between-farm spread of HPAI virus. France accounted for 68% of the overall poultry outbreaks, Hungary for 24% and all other affected countries for less than 2% each. Most detections in wild birds were reported by Germany (158), followed by the Netherlands (98) and the United Kingdom (48). The observed persistence of HPAI (H5) virus in wild birds since the 2020-2021 epidemic wave indicates that it may have become endemic in wild bird populations in Europe, implying that the health risk from HPAI A(H5) for poultry, humans, and wildlife in Europe remains present year-round, with the highest risk in the autumn and winter months. Response options to this new epidemiological situation include the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection measures in the different poultry production systems. Medium to long-term strategies for reducing poultry density in high-risk areas should also be considered. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. HPAI A(H5) viruses were also detected in wild mammal species in Canada, USA and Japan, and showed genetic markers of adaptation to replication in mammals. Since the last report, four A(H5N6), two A(H9N2) and two A(H3N8) human infections were reported in China and one A(H5N1) in USA. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA