Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Funct Integr Genomics ; 23(3): 276, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37596462

RESUMEN

SOS2-like protein kinases (PKS/CIPK) family genes are known to be involved in various abiotic stresses in plants. Even though, its functions have been well characterized under salt and drought stresses. The roles of PKS genes associated with alkaline stress response are not fully established yet. In this study, we identified 56 PKS family genes which could be mainly classified into three groups in wild soybean (Glycine soja). PKS family genes transcript profiles revealed different expression patterns under alkali stress. Furthermore, we confirmed the regulatory roles of GsPKS24 in response to NaHCO3, pH and ABA treatments. Overexpression of GsPKS24 enhanced plant tolerance to pH stress in Arabidopsis and soybean hairy roots but conferred suppressed pH tolerance in Arabidopsis atpks mutant. Additionally, Overexpression of GsPKS24 decreased the ABA sensitivity compared to Arabidopsis atpks mutant which displayed more sensitivity towards ABA. Moreover, upregulated expression of stress responsive and ABA signal-related genes were detected in GsPKS24 overexpression lines. In conclusion, we identified the wild soybean PKS family genes, and explored the roles of GsPKS24 in positive response to pH stress tolerance, and in alleviation of ABA sensitivity.


Asunto(s)
Arabidopsis , Fabaceae , Arabidopsis/genética , Calcineurina , Transducción de Señal , Glicina , Concentración de Iones de Hidrógeno
2.
Funct Integr Genomics ; 23(3): 216, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391642

RESUMEN

Strigolactone (SL) is a new plant hormone, which not only plays an important role in stimulating seed germination, plant branching, and regulating root development, but also plays an important role in the response of plants to abiotic stresses. In this study, the full-length cDNA of a soybean SL signal transduction gene (GmMAX2a) was isolated, cloned and revealed an important role in abiotic stress responses. Tissue-specific expression analysis by qRT-PCR indicated that GmMAX2a was expressed in all tissues of soybean, but highest expression was detected in seedling stems. Moreover, upregulation of GmMAX2a transcript expression under salt, alkali, and drought conditions were noted at different time points in soybean leaves compared to roots. Additionally, histochemical GUS staining studies revealed the deep staining in PGmMAX2a: GUS transgenic lines compared to WT indicating active involvement of GmMAX2a promoter region to stress responses. To further investigate the function of GmMAX2a gene in transgenic Arabidopsis, Petri-plate experiments were performed and GmMAX2a OX lines appeared with longer roots and improved fresh biomass compared to WT plants to NaCl, NaHCO3, and mannitol supplementation. Furthermore, the expression of several stress-related genes such as RD29B, SOS1, NXH1, AtRD22, KIN1, COR15A, RD29A, COR47, H+-APase, NADP-ME, NCED3, and P5CS were significantly high in GmMAX2a OX plants after stress treatment compared to WT plants. In conclusion, GmMAX2a improves soybean tolerance towards abiotic stresses (salt, alkali, and drought). Hence, GmMAX2a can be considered a candidate gene for transgenic breeding against various abiotic stresses in plants.


Asunto(s)
Arabidopsis , Cloruro de Sodio , Glycine max/genética , Arabidopsis/genética , Sequías , Fitomejoramiento , Álcalis
3.
Physiol Plant ; 174(5): e13784, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36151903

RESUMEN

The plant hormone strigolactones (SLs) play crucial roles in regulating plant development and adaptations to abiotic stresses. Even though the functional roles of SLs have been identified in response to abiotic stresses, the function, and mechanism of SLs are not fully established under alkaline stress. In this study, we identified that exogenous SL could improve alkaline tolerance of soybean seedlings, especially when treated with 0.5 µM SL. The application of SL remarkably reduced the malondialdehyde content, hydrogen peroxide content, and increased the activity of antioxidant enzymes under alkaline stress, suggesting that SL improved the alkaline tolerance by regulating the antioxidant defense capacity. The RNA sequencing data showed 530 special differentially expressed genes under SL treatment and alkaline stress, mainly were associated with antioxidant processes and phenylpropanoid biosynthetic pathway. Some transcription factors were also induced by SL under alkaline stress as confirmed by quantitative real-time PCR (qRT-PCR). Furthermore, SL largely increased the Na content in leaves and decreased Na content in roots under alkaline stress, which suggested that SL might promote the transport of Na from the roots to the leaves of the soybean seedlings. Meanwhile, exogenous SL decreased the content of other elements such as K, Mg, Fe, and Cu in leaves or roots under alkaline stress. Collectively, our results suggested a role of SL in regulating antioxidant defense capacity, specific gene expression, and alterations in ionic contents to alleviate harmful effects of alkaline stress in soybean seedlings.


Asunto(s)
Glycine max , Plantones , Plantones/metabolismo , Glycine max/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes , Malondialdehído , Factores de Transcripción
5.
Chemosphere ; 340: 139718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37567273

RESUMEN

The green-collar strategies for nanomaterial synthesis with novel structural competencies have received significant attention in nanotechnology owing to their potential benefits. The utilization of silica nanoparticles for wastewater treatment through heavy metal ions remediation is the focal point of the present study. With this intent, silica was extracted from bagasse ash by the sol-gel method and modified using chitosan. Chemical and physical characteristics of silica(S), silica/Chitosan (SCs), were reckoned through X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) and the efficiency of synthesized biomaterials for removing heavy metal ions. Cadmium and Lead from wastewater was evaluated by conducting closed batch experiments. Isotherm and kinetics models were applied to understand the adsorption mechanism. Results of heavy metal ions removal showed that the S possesses the highest removal efficiency of 88% for cadmium. Equilibrium was established within 56 min following a Langmuir isotherm model and pseudo-second-order reaction. The synthesized biomaterials were also tested against the fungal (Aspergillus Niger) and bacterial strains (Escherichia coli and Staphylococcus aureus) to determine their antimicrobial properties Maximum inhibition of 26 mm was shown by SCs for E.coli. Synthesized samples were not so effective for A.niger. The high adsorption potential of silica nanoparticles reveals their potential to treat wastewater containing inorganic pollutants like calcium and lead released from the sugar industry firsthand, thereby building a circular economy by controlling the pollution from source to sink. The synthesized silica nanoparticles and silica/chitosan biomaterials demonstrated high adsorption potential for heavy metal ions, making them promising candidates for integration into Algal Membrane Bioreactors to enhance wastewater treatment efficiency and remove toxic pollutants. Their multifunctional properties, including antimicrobial activity, also offer potential for improving microbial control within AMBRs, ensuring a more effective and sustainable wastewater treatment process.


Asunto(s)
Quitosano , Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Cadmio/química , Aguas Residuales , Quitosano/química , Metales Pesados/química , Iones , Dióxido de Silicio , Materiales Biocompatibles , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
6.
Sci Rep ; 12(1): 17146, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229496

RESUMEN

The ubiquitination pathway is involved in the posttranslational modification of cellular proteins. However, the role of E3 ubiquitin ligase family proteins under abiotic stress conditions remains unclear, particularly in soybean. The core objective of the current study was to isolate and functionally characterize the GsPUB8 protein gene from wild soybean (Glycine soja) by using a homologous cloning method to investigate its abiotic stress responses. The GsPUB8 is a 40,562 Da molecular weight protein with 373 amino acid residues. The sequence alignment revealed the presence of U-box domain while the phylogenetic analysis showed an abundance of PUB8 proteins in both monocot and dicot plants. Analysis of gene structure predicted the absence of introns along with the presence of one exon. Furthermore, the activity of the GsPUB8 protein was anticipated in the plasma membrane and its expression was persuaded with NaCl, ABA, PEG6000, and NaHCO3 treatments with considerably higher manifestation in roots than leaves although, expressed in both vegetative and reproductive parts of G. soja. GsPUB8 protein showed 54% and 32% sequence identity to U-box domain containing 8 and 12 proteins from Arabidopsis thaliana and Oryza sativa subsp. japonica, respectively. GsPUB8 exhibited relatively higher expression under saline and drought stress particularly in roots. Whereas, the 3D model of GsPUB8 protein was generated using the SWISS-MODEL. This study can be used to manipulate the GsPUB8 protein or GsPUB8 gene for transformation purposes and its functional characterization under abiotic stress conditions.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Aminoácidos/metabolismo , Arabidopsis/genética , Clonación Molecular , Sequías , Glicina/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Cloruro de Sodio/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Chemosphere ; 296: 133990, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35189196

RESUMEN

Polypropylene microplastic particles are one of the predominant pollutants in marine ecosystems and their toxic effects are unknown in aquatic biota. The study aims to prepare the spherical shaped polypropylene microplastics (size range 11.86 µm-44.62 µm) and assess their toxic effects (1, 25, 50, 75 and 100 µg/mL) in various life stages (nauplii, metanauplii and juvenile) of marine microcrustacean Artemia salina within 48 h. In addition, microplastics ingestion by Artemia nauplii was proved by FTIR analysis. The results revealed, microplastics accumulation in their tract leads to change in their homeostasis, as followed increase in the oxidative burst causes mortality in nauplii (LC50 40.947 µg/mL) and meta nauplii (LC50 51.954 µg/mL). In juvenile, swimming behaviour was changed. Moreover, microplastic consumption disturbs the antioxidant biomarkers such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione -S- Transferase (GST) and reduces the neurotransmitter enzyme acetylcholinesterase (AChE) activity. In addition, histology of juvenile Artemia showed damage in epithelial cells. This study indicates that exposure to polypropylene microplastics is more harmful to zooplanktonic organisms of the marine ecosystem.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Artemia , Ecosistema , Plásticos/toxicidad , Polipropilenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Front Plant Sci ; 13: 1066790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714778

RESUMEN

Introduction: Drought stress has drastically hampered the growth and yield of many crops. Therefore, environmentally safe agricultural techniques are needed to mitigate drought stress impact. To this end, foliar spray of nano-nutrients solution to (NNS) alleviate harmful aspects of drought stress. Methods: In a completely randomized design (CRD) experiment, seedlings were transplanted into pots at 2-3 leaf stage, each filled with loam-compost- organic manure soil (3:1:1). Plants were divided into two groups. (a) control group (b) applied stress group. Plants at vegetative stage were treated with 100% FC for control group and 60% FC for drought group, and these levels were maintained until harvesting. Three treatments of NNS with four levels i.e., 0%, 1%, 3% and 5% were given to all the pots after two weeks of drought stress treatment with a gap of 5 days at vegetative stage. Results and discussion: Application of 1% of nano-nutrient solution displayed an improvement in shoot length, shoot fresh and dry weight, number of leaves and flowers. Leaf chlorophylls and carotenoids and total phenolics contents were found maximum while minimum electrolyte leakage was observed at 3% application compared to control. Further, 1% application of NNS increased the Leaf RWC%, total soluble sugars, flavonoids contents. 5% NNS application exhibited higher total free amino acids with minimum lipid peroxidation rate in leaves of tomato under drought. Antioxidant enzyme activities increased in a concentration dependent manner as gradual increase was observed at 1%, 3% and 5%, respectively. Overall, this study introduced a new insights on using nano-nutrient solutions to maintain natural resources and ensure agricultural sustainability.

9.
BMJ Case Rep ; 14(11)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848423

RESUMEN

Signet ring cell carcinoma, in general, is a peculiar tumour. There is always a query regarding its exact site of origin. Even, immunohistochemistry shows overlapping staining patterns between various sites. On one hand, signet ring cell carcinoma of the bladder is a rare occurrence, but on the other hand metastatic signet ring cell carcinoma to the bladder is not uncommon. However, without prior knowledge of the primary site of tumour clinically and radiologically, definitive diagnosis is challenging based on morphology and immunohistochemistry.


Asunto(s)
Carcinoma de Células en Anillo de Sello , Vejiga Urinaria , Carcinoma de Células en Anillo de Sello/diagnóstico por imagen , Humanos , Inmunohistoquímica , Vejiga Urinaria/diagnóstico por imagen
10.
Artículo en Inglés | MEDLINE | ID: mdl-32729847

RESUMEN

SUMMARY: Colorectal poorly differentiated neuroendocrine carcinomas (NECs) are typically associated with poor outcomes. The mechanisms of their aggressiveness are still being investigated. Microsatellite instability (MSI) has recently been found in colorectal NECs showing aberrant methylation of the MLH1 gene and is associated with improved prognosis. We present a 76-year-old lady with an ascending colon tumour showing features of a pT3 N0 R0, large cell NEC (LCNEC) following right hemicolectomy. The adjacent mucosa showed a sessile serrated lesion (SSL) with low-grade dysplasia. Immunohistochemistry showed loss of expression for MLH1 and PMS2 in both the LCNEC and dysplastic SSL. Molecular analysis indicated the sporadic nature of the MLH1 mismatch repair (MMR) protein-deficient status. Our patient did not receive adjuvant therapy and she is alive and disease-free after 34 months follow-up. This finding, similar to early-stage MMR-deficient colorectal adenocarcinoma, is likely practice-changing and will be critical in guiding the appropriate treatment pathway for these patients. We propose that testing of MMR status become routine for early-stage colorectal NECs. LEARNING POINTS: Colorectal poorly differentiated neuroendocrine carcinomas (NECs) are known to be aggressive and typically associated with poor outcomes. A subset of colorectal NECs can display microsatellite instability (MSI) with mismatch repair (MMR) protein-deficient status. MMR-deficient colorectal NECs have been found to have a better prognosis compared with MMR-proficient NECs. MMR status can be detected using immunohistochemistry. Immunohistochemistry for MMR status is routinely performed for colorectal adenocarcinomas. Immunohistochemical expression of MMR protein and MSI analysis should be performed routinely for early-stage colorectal NECs in order to identify a subgroup of MMR-deficient NECs which are associated with a significantly more favourable prognosis.

11.
Plant Physiol Biochem ; 119: 9-20, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28841544

RESUMEN

The N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) superfamily, specifically the SNAP25-type proteins and t-SNAREs, have been proposed to regulate cellular processes and plant resistance mechanisms. However, little is known about the role of SNAP25-type proteins in combating abiotic stresses, specifically in wild soybean. In the current study, the isolation and functional characterization of the putative synaptosomal-associated SNAP25-type protein gene GsSNAP33 from wild soybean (Glycine soja) were performed. GsSNAP33 has a molecular weight of 33,311 Da and comprises 300 amino acid residues along with Qb-Qc SNARE domains. Multiple sequence alignment revealed the highest similarity of the GsSNAP33 protein to GmSNAP33 (91%), VrSNAP33 (89%), PvSNAP33 (86%) and AtSNAP33 (63%). Phylogenetic studies revealed the abundance of SNAP33 proteins mostly in dicotyledons. Quantitative real-time PCR assays confirmed that GsSNAP33 expression can be induced by salt, alkali, ABA and PEG treatments and that GsSNAP33 is highly expressed in the pods, seeds and roots of Glycine soja. Furthermore, the overexpression of the GsSNAP33 gene in WT Arabidopsis thaliana resulted in increased germination rates, greater root lengths, improved photosynthesis, lower electrolyte leakage, higher biomass production and up-regulated expression levels of various stress-responsive marker genes, including KINI, COR15A, P5Cs, RAB18, RD29A and COR47 in transgenic lines compared with those in WT lines. Subcellular localization studies revealed that the GsSNAP33-eGFP fusion protein was localized to the plasma membrane, while eGFP was distributed throughout whole cytoplasm of onion epidermal cells. Collectively, our findings suggest that GsSNAP33, a novel plasma membrane protein gene of Glycine soja, might be involved in improving plant responses to salt and drought stresses in Arabidopsis.


Asunto(s)
Arabidopsis , Deshidratación , Glycine max/genética , Presión Osmótica , Proteínas de Plantas , Plantas Modificadas Genéticamente , Proteínas Qb-SNARE , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Deshidratación/genética , Deshidratación/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Qb-SNARE/biosíntesis , Proteínas Qb-SNARE/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA