Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Dev Growth Differ ; 64(7): 409-416, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36053973

RESUMEN

The stimulated by retinoic acid gene 8 (STRA8)/MEIOSIN complex and polycomb repressive complex (PRC) 1.6, a PRC1 subtype, are believed to be positive and negative regulators of meiotic onset, respectively. During meiotic initiation, the transcription repressive activity of PRC1.6 must be attenuated so that meiosis-related genes can be effectively activated by the STRA8/MEIOSIN complex. However, the molecular mechanisms that control the impairment of PRC1.6 function remain unclear. We recently demonstrated that the Mga gene, which encodes a scaffolding component of PRC1.6, produces variant mRNA by alternative splicing specifically during meiosis. Furthermore, the anomalous MGA protein encoded by the variant mRNA bears an intrinsic ability to function as a dominant negative regulator against the construction of PRC1.6 and is therefore assumed to be, at least in part, involved in impairment of the complex. Therefore, to unequivocally evaluate the physiological significance of Mga variant mRNA production in gametogenesis, we examined the consequences of a genetic manipulation that renders mice unable to produce Mga variant mRNA. Our data revealed that mutant mice were equivalent to wild-type mice in terms of viability and fertility. Our detailed examination of spermatogenesis also revealed that this genetic alteration is not associated with any apparent abnormalities in testis size, spermatogenic cycle, timing of meiotic onset, or marker gene expression of spermatogonia and spermatocytes. Taken together, these data indicate that the production of germ cell-specific Mga variant mRNA is dispensable not only for viability but also for gametogenesis.


Asunto(s)
Empalme Alternativo , Células Germinativas , Empalme Alternativo/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fertilidad , Células Germinativas/metabolismo , Masculino , Meiosis/genética , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatogénesis/genética , Tretinoina/metabolismo
2.
Stem Cells ; 39(11): 1435-1446, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224650

RESUMEN

Although the physiological meaning of the high potential of mouse embryonic stem cells (ESCs) for meiotic entry is not understood, a rigid safeguarding system is required to prevent ectopic onset of meiosis. PRC1.6, a non-canonical PRC1, is known for its suppression of precocious and ectopic meiotic onset in germ cells and ESCs, respectively. MGA, a scaffolding component of PRC1.6, bears two distinct DNA-binding domains termed bHLHZ and T-box. However, it is unclear how this feature contributes to the functions of PRC1.6. Here, we demonstrated that both domains repress distinct sets of genes in murine ESCs, but substantial numbers of meiosis-related genes are included in both gene sets. In addition, our data demonstrated that bHLHZ is crucially involved in repressing the expression of Meiosin, which plays essential roles in meiotic entry with Stra8, revealing at least part of the molecular mechanisms that link negative and positive regulation of meiotic onset.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Meiosis , Células Madre Embrionarias de Ratones , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Células Madre Embrionarias/metabolismo , Células Germinativas , Meiosis/genética , Ratones
3.
Stem Cells ; 36(9): 1355-1367, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29761578

RESUMEN

Embryonic stem cells (ESCs) exhibit two salient features beneficial for regenerative medicine: unlimited self-renewal and pluripotency. Methyl-CpG-binding domain protein 3 (Mbd3), a scaffolding component of the nucleosome remodeling deacetylase complex, is a specific regulator of pluripotency, as ESCs lacking Mbd3 are defective for lineage commitment potential but retain normal self-renewal properties. However, functional similarities and dissimilarities among the three Mbd3 isoforms (a, b, and c) have not been intensively explored. Herein, we demonstrated that Mbd3c, which lacks an entire portion of the MBD domain, exerted equivalent activity for counteracting the defective lineage commitment potential of Mbd3-knockout ESCs. Our analyses also revealed that the coiled-coil domain common to all three MBD3 isoforms, but not the MBD domain, plays a crucial role in this activity. Mechanistically, our data demonstrate that the activity of the coiled-coil domain is exerted, at least in part, through recruitment of polycomb repressive complex 2 to a subset of genes linked to development and organogenesis, thus establishing stable transcriptional repression. Stem Cells 2018;36:1355-1367.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Dominios Proteicos , Isoformas de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética
4.
Dev Growth Differ ; 59(8): 639-647, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28967672

RESUMEN

The Oct4 gene is a master regulator of the pluripotent properties of embryonic stem cells (ESCs). Recently, Oct4 loci were shown to frequently localize in close proximity to one another during the early stage of cellular differentiation, implicating this event as an important prerequisite step for ESCs to exert their full differentiation potential. Although the differentiation capacity of embryonal carcinoma cells (ECCs), such as F9 and P19 ECC lines, is severely restricted compared with ESCs, ECCs bear a highly similar expression profile to that of ESCs including expression of Oct4 and other pluripotency marker genes. Therefore, we examined whether allelic pairing of Oct4 loci also occurs during differentiation of F9 and P19 ECCs. Our data clearly demonstrate that this event is only observed within ESCs, but not ECCs, subjected to induction of differentiation, indicating transient allelic pairing of Oct4 loci as a specific feature of pluripotent ESCs. Moreover, our data revealed that this pairing did not occur broadly across chromosome 17, which carries the Oct4 gene, but occurred locally between Oct4 loci, suggesting that Oct4 loci somehow exert a driving force for their allelic pairing.


Asunto(s)
Diferenciación Celular , Cromosomas Humanos Par 17 , Sitios Genéticos , Células Madre Embrionarias Humanas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros , Alelos , Línea Celular , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 17/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/genética
5.
Stem Cells ; 33(4): 1089-101, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25522312

RESUMEN

Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in a plethora of functions including ribosomal biogenesis and maintenance of telomere integrity. In addition to its expression in cancerous cells, the NS gene is expressed in stem cells including embryonic stem cells (ESCs). Previous knockdown and knockout studies have demonstrated that NS is important to preserve the self-renewality and high expression levels of pluripotency marker genes in ESCs. Here, we found that forced expression of Nanog or Esrrb, but not other pluripotency factors, resulted in the dispensability of NS expression in ESCs. However, the detrimental phenotypes of ESCs associated with ablation of NS expression were not mitigated by forced expression of Rad51 or a nucleolar localization-defective NS mutant that counteracts the damage associated with loss of NS expression in other NS-expressing cells such as neural stem/progenitor cells. Thus, our results indicate that NS participates in preservation of the viability and integrity of ESCs, which is distinct from that in other NS-expressing cells.


Asunto(s)
Proteínas Portadoras/biosíntesis , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas Nucleares/biosíntesis , Receptores de Estrógenos/biosíntesis , Animales , Proteínas de Unión al GTP , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos ICR , Proteína Homeótica Nanog , Proteínas de Unión al ARN
6.
Stem Cells ; 33(3): 713-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25385436

RESUMEN

c-Myc and phosphatidylinositol 3-OH kinase (PI3K) both participate in diverse cellular processes, including cell cycle control and tumorigenic transformation. They also contribute to preserving embryonic stem cell (ESC) characteristics. However, in spite of the vast knowledge, the molecular relationship between c-Myc and PI3K in ESCs is not known. Herein, we demonstrate that c-Myc and PI3K function cooperatively but independently to support ESC self-renewal when murine ESCs are cultured under conventional culture condition. Interestingly, culture of ESCs in 2i-condition including a GSK3ß and MEK inhibitor renders both PI3K and Myc signaling dispensable for the maintenance of pluripotent properties. These results suggest that the requirement for an oncogenic proliferation-dependent mechanism sustained by Myc and PI3K is context dependent and that the 2i-condition liberates ESCs from the dependence of this mechanism.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
7.
Sci Rep ; 14(1): 5236, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433229

RESUMEN

Meiosis is a specialized type of cell division that occurs physiologically only in germ cells. We previously demonstrated that MYC-associated factor X (MAX) blocks the ectopic onset of meiosis in embryonic and germline stem cells in culture systems. Here, we investigated the Max gene's role in mouse primordial germ cells. Although Max is generally ubiquitously expressed, we revealed that sexually undifferentiated male and female germ cells had abundant MAX protein because of their higher Max gene expression than somatic cells. Moreover, our data revealed that this high MAX protein level in female germ cells declined significantly around physiological meiotic onset. Max disruption in sexually undifferentiated germ cells led to ectopic and precocious expression of meiosis-related genes, including Meiosin, the gatekeeper of meiotic onset, in both male and female germ cells. However, Max-null male and female germ cells did not complete the entire meiotic process, but stalled during its early stages and were eventually eliminated by apoptosis. Additionally, our meta-analyses identified a regulatory region that supports the high Max expression in sexually undifferentiated male and female germ cells. These results indicate the strong connection between the Max gene and physiological onset of meiosis in vivo through dynamic alteration of its expression.


Asunto(s)
Factor X , Meiosis , Animales , Femenino , Masculino , Ratones , Apoptosis , Puntos de Control del Ciclo Celular , Células Germinativas , Meiosis/genética
8.
Stem Cells ; 30(8): 1634-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22696478

RESUMEN

c-Myc participates in diverse cellular processes including cell cycle control, tumorigenic transformation, and reprogramming of somatic cells to induced pluripotent cells. c-Myc is also an important regulator of self-renewal and pluripotency of embryonic stem cells (ESCs). We recently demonstrated that loss of the Max gene, encoding the best characterized partner for all Myc family proteins, causes loss of the pluripotent state and extensive cell death in ESCs strictly in this order. However, the mechanisms and molecules that are responsible for these phenotypes remain largely obscure. Here, we show that Sirt1, p53, and p38(MAPK) are crucially involved in the detrimental phenotype of Max-null ESCs. Moreover, our analyses revealed that these proteins are involved at varying levels to one another in the hierarchy of the pathway leading to cell death in Max-null ESCs.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antioxidantes/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Muerte Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Doxiciclina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Humanos , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Transfección , Proteína p53 Supresora de Tumor/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
9.
Sci Rep ; 11(1): 9737, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958653

RESUMEN

A non-canonical PRC1 (PRC1.6) prevents precocious meiotic onset. Germ cells alleviate its negative effect by reducing their amount of MAX, a component of PRC1.6, as a prerequisite for their bona fide meiosis. Here, we found that germ cells produced Mga variant mRNA bearing a premature termination codon (PTC) during meiosis as an additional mechanism to impede the function of PRC1.6. The variant mRNA encodes an anomalous MGA protein that lacks the bHLHZ domain and thus functions as a dominant negative regulator of PRC1.6. Notwithstanding the presence of PTC, the Mga variant mRNA are rather stably present in spermatocytes and spermatids due to their intrinsic inefficient background of nonsense-mediated mRNA decay. Thus, our data indicate that meiosis is controlled in a multi-layered manner in which both MAX and MGA, which constitute the core of PRC1.6, are at least used as targets to deteriorate the integrity of the complex to ensure progression of meiosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Germinativas/citología , Meiosis , Complejo Represivo Polycomb 1/genética , ARN Mensajero/genética , Animales , Femenino , Variación Genética , Células Germinativas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Espermatogénesis , Espermatozoides/citología , Espermatozoides/metabolismo
10.
Stem Cells ; 27(5): 1066-76, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19418458

RESUMEN

Stem cells have the remarkable ability to self-renew and to generate multiple cell types. Nucleostemin is one of proteins that are enriched in many types of stem cells. Targeted deletion of nucleostemin in the mouse results in developmental arrest at the implantation stage, indicating that nucleostemin is crucial for early embryogenesis. However, the molecular basis of nucleostemin function in early mouse embryos remains largely unknown, and the role of nucleostemin in tissue stem cells has not been examined by gene targeting analyses due to the early embryonic lethality of nucleostemin null animals. To address these questions, we generated inducible nucleostemin null embryonic stem (ES) cells in which both alleles of nucleostemin are disrupted, but nucleostemin cDNA under the control of a tetracycline-responsive transcriptional activator is introduced into the Rosa26 locus. We show that loss of nucleostemin results in reduced cell proliferation and increased apoptosis in both ES cells and ES cell-derived neural stem/progenitor cells. The reduction in cell viability is much more profound in ES cells than in neural stem/progenitor cells, an effect that is mediated at least in part by increased induction and accumulation of p53 and/or activated caspase-3 in ES cells than in neural stem/progenitor cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Biomarcadores/metabolismo , Proteínas Portadoras/genética , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxiciclina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Activación Enzimática/efectos de los fármacos , Proteínas de Unión al GTP , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Fenotipo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteínas de Unión al ARN , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/metabolismo
11.
Biochem Biophys Res Commun ; 378(2): 319-23, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19032937

RESUMEN

To identify genes with pluripotent state-specific expression in embryonic stem (ES) cells, we compared gene expression profiles between undifferentiated and differentiated mouse ES cells using DNA microarrays. Among the numerous genes identified, we focused on dual specificity phosphatase 6 (DUSP6), which had previously been shown to be expressed in undifferentiated human ES cells. We have identified and characterized a regulatory enhancer that we have termed PEDRE that controls pluripotent state-specific expression of DUSP6. This 82-base pair enhancer overlaps with, but is distinct from, a recently identified regulatory element that is regulated by the FGF-ERK pathway. The sequence of PEDRE is 100% identical between mouse and human DUSP6, suggesting that the molecular basis of DUSP6 gene expression in undifferentiated state of ES cells is highly conserved during evolution.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Células Madre Embrionarias/enzimología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células Madre Pluripotentes/enzimología , Animales , Diferenciación Celular/genética , Secuencia Conservada , Células Madre Embrionarias/citología , Evolución Molecular , Perfilación de la Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/citología
12.
Mol Cell Biol ; 26(17): 6557-70, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16914739

RESUMEN

Many genes have been identified that are specifically expressed in multiple types of stem cells in their undifferentiated state. It is generally assumed that at least some of these putative "stemness" genes are involved in maintaining properties that are common to all stem cells. We compared gene expression profiles between undifferentiated and differentiated embryonic stem cells (ESCs) using DNA microarrays. We identified several genes with much greater signal in undifferentiated ESCs than in their differentiated derivatives, among them the putative stemness gene encoding junctional adhesion molecule B (Jam-B gene). However, in spite of the specific expression in undifferentiated ESCs, Jam-B mutant ESCs had normal morphology and pluripotency. Furthermore, Jam-B homozygous mutant mice are fertile and have no overt developmental defects. Moreover, we found that neural and hematopoietic stem cells recovered from Jam-B mutant mice are not impaired in their ability to self-renew and differentiate. These results demonstrate that Jam-B is dispensable for normal mouse development and stem cell identity in embryonic, neural, and hematopoietic stem cells.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Tejido Nervioso/citología , Animales , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Células Cultivadas , Cruzamientos Genéticos , Femenino , Regulación de la Expresión Génica , Marcación de Gen , Heterocigoto , Inmunoglobulinas/deficiencia , Inmunoglobulinas/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Análisis por Micromatrices , Células Madre Multipotentes/citología , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/citología
13.
Sci Rep ; 9(1): 10933, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358774

RESUMEN

YAP (also known as YAP1 or YAP65) is a transcriptional coactivator that interacts with a number of transcription factors including RUNX and TEAD and plays a pivotal role in controlling cell growth. YAP is classified as a proto-oncogene. However, the mechanism by which activated YAP induces cancerous changes is not well known. Here we demonstrate that overexpression of YAP in NIH3T3 cells was sufficient for inducing tumorigenic transformation of cells. Mechanistically, YAP exerts its function in cooperation with the TEAD transcription factor. Our data also show that cMYC is a critical factor that acts downstream of the YAP/TEAD complex. Furthermore, we also found that aberrant activation of YAP is sufficient to drive tumorigenic transformation of non-immortalized mouse embryonic fibroblasts. Together our data indicate that YAP can be categorized as a new type of proto-oncogene distinct from typical oncogenes, such as H-RAS, whose expression in non-immortalized cells is tightly linked to senescence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Genes ras , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Células 3T3 NIH , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
14.
FEBS Lett ; 582(18): 2811-5, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18638478

RESUMEN

The transcription factor Sox2 is expressed at high levels in neural stem and progenitor cells. Here, we inactivated Sox2 specifically in the developing brain by using Cre-loxP system. Although mutant animals did not survive after birth, analysis of late gestation embryos revealed that loss of Sox2 causes enlargement of the lateral ventricles and a decrease in the number of neurosphere-forming cells. However, although their neurogenic potential is attenuated, Sox2-deficient neural stem cells retain their multipotency and self-renewal capacity. We found that expression level of Sox3 is elevated in Sox2 null developing brain, probably mitigating the effects of loss of Sox2.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Proteínas HMGB/fisiología , Ventrículos Laterales/embriología , Neuronas/citología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Silenciador del Gen , Proteínas HMGB/genética , Proteínas del Grupo de Alta Movilidad/biosíntesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Neuronas/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXB1 , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
15.
Mol Cell Biol ; 25(12): 5084-94, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15923625

RESUMEN

The POU transcription factor Oct-3/4 has been shown to be critical for maintaining embryonic stem (ES) cell character. However, the molecular mechanisms underlying its function remain elusive. We have previously shown that among the POU transcription factor family of proteins, Oct-3/4 alone is able to bind to the regulatory region of the UTF1 gene bearing a variant octamer sequence together with Sox-2. Here, we demonstrate using Oct-3/4-Oct-6 chimeras that there is a precise correlation between the ability of proteins to form a complex on the UTF1 enhancer with Sox-2 and the ability to maintain the stem cell state in ES cells. Different chimeric proteins show differential abilities to form a Sox-2-containing complex on the UTF1 regulatory region, with a decrease in efficiency of the complex formation accompanied by a decrease in the level of UTF1 expression and the rate of cell proliferation. Overexpression of UTF1 in these slow-growing cells was able to restore their proliferation rate to wild-type levels. Moreover, UTF1 was also observed to have an effect on teratoma formation. These results suggest a molecular pathway by which Oct-3/4 induces rapid proliferation and tumorigenic properties of ES cells through activation of the UTF1 gene.


Asunto(s)
Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Células Madre/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Células Cultivadas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/genética , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Neoplasias Experimentales , Factor 3 de Transcripción de Unión a Octámeros , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXB1 , Alineación de Secuencia , Células Madre/citología , Teratoma/metabolismo , Factores de Transcripción/genética
16.
Mol Cell Biol ; 24(10): 4207-20, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15121842

RESUMEN

The Sox-2 gene is expressed in embryonic stem (ES) cells and neural stem cells. Two transcription enhancer regions, Sox-2 regulatory region 1 (SRR1) and SRR2, were described previously based on their activities in ES cells. Here, we demonstrate that these regulatory regions also exert their activities in neural stem cells. Moreover, our data reveal that, as in ES cells, both SRR1 and SRR2 show their activities rather specifically in multipotent neural stem or progenitor cells but cease to function in differentiated cells, such as postmitotic neurons. Systematic deletion and mutation analyses showed that the same or at least overlapping DNA elements of SRR2 are involved in its activity in both ES and neural stem or progenitor cells. Thus, SRR2 is the first example of an enhancer in which a single regulatory core sequence is involved in multipotent-state-specific expression in two different stem cells, i.e., ES and neural stem cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Multipotentes/metabolismo , Proteínas Nucleares/genética , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunohistoquímica , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Endogámicos ICR , Células Madre Multipotentes/citología , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/citología , Neuronas/metabolismo , Embarazo , Factores de Transcripción SOXB1 , Factores de Transcripción , Transfección , Trofoblastos/citología , Trofoblastos/metabolismo
17.
Nucleic Acids Res ; 30(14): 3202-13, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12136102

RESUMEN

Sox-2 is a transcriptional cofactor expressed in embryonic stem (ES) cells as well as in neuronal cells. It has been demonstrated that Sox-2 plays an important role in supporting gene expression in ES cells, especially by forming a complex with embryonic Octamer factor, Oct-3/4. Here, we have analyzed the regulatory regions of the Sox-2 gene and identified two enhancers which stimulate transcription in ES cells as well as in embryonal carcinoma cells. These regulatory regions, which we termed Sox regulatory regions (SRR) 1 and 2, exert their function specifically when cells are in an undifferentiated state. Interestingly, like the regulatory elements of FGF-4 and UTF1 genes, combinatorial action of Octamer and Sox-2 binding sites support the SRR2 activity. However, biochemical analyses reveal that, due to the unique sequence and/or its organization, the SRR2 bears distinct characteristics from those of FGF-4 and UTF1 regulatory elements. That is, unlike the FGF-4 gene enhancer, the SRR2 precludes the binding of the Oct-1-Sox-2 complex. The difference between the SRR2 and UTF1 regulatory element is in the ability of SRR2 to recruit the Oct-6-Sox-2 complex as well as the Oct-3/4-Sox-2 complex. Co-transfection analyses confirm that both complexes are able to stimulate transcription through the SRR2 element.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Células COS , Línea Celular , Proteínas Cromosómicas no Histona , Clonación Molecular , Proteínas de Unión al ADN/genética , Proteínas HMGB , Luciferasas/genética , Luciferasas/metabolismo , Sustancias Macromoleculares , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros , Factor 6 de Transcripción de Unión a Octámeros , Plásmidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXB1 , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Transfección , Células Tumorales Cultivadas
18.
Nat Commun ; 7: 11056, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025988

RESUMEN

Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Germinativas/metabolismo , Meiosis/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ácido Ascórbico/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Gametogénesis/efectos de los fármacos , Gametogénesis/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Germinativas/efectos de los fármacos , Meiosis/efectos de los fármacos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Proteínas del Grupo Polycomb/metabolismo , Retinoides/farmacología
19.
Stem Cells Dev ; 23(18): 2170-9, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24200330

RESUMEN

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by defined factors. However, substantial cell numbers subjected to iPSC induction stray from the main reprogramming route and are immortalized as partial iPSCs. These partial iPSCs can become genuine iPSCs by exposure to the ground state condition. However, such conversion is only possible for mouse partial iPSCs, and it is not applicable to human cells. Moreover, the molecular basis of this conversion is completely unknown. Therefore, we performed genome-wide screening with a piggyBac vector to identify genes involved in conversion from partial to genuine iPSCs. This screening led to identification of Cnot2, one of the core components of the Ccr4-Not complex. Subsequent analyses revealed that other core components, Cnot1 and Cnot3, also contributed to the conversion. Thus, our data have uncovered a novel role of core components of the Ccr4-Not complex as regulators of transition from partial to genuine iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Complejos Multiproteicos/metabolismo , Receptores CCR4/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Separación Celular , Células Clonales , Regulación hacia Abajo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito
20.
PLoS One ; 8(12): e83769, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386274

RESUMEN

Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties.


Asunto(s)
Células Madre Embrionarias/metabolismo , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcriptoma , Animales , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA