Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Chem Rev ; 123(3): 1166-1205, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696538

RESUMEN

Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 µm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.


Asunto(s)
Indicadores y Reactivos , Biomarcadores/análisis
2.
PLoS Pathog ; 18(8): e1010750, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35930610

RESUMEN

The synthesis of exopolysaccharides as biofilm matrix components by pathogens is a crucial factor for chronic infections and antibiotic resistance. Many periplasmic proteins involved in polymer processing and secretion in Gram-negative synthase dependent exopolysaccharide biosynthetic systems have been individually characterized. The operons responsible for the production of PNAG, alginate, cellulose and the Pel polysaccharide each contain a gene that encodes an outer membrane associated tetratricopeptide repeat (TPR) domain containing protein. While the TPR domain has been shown to bind other periplasmic proteins, the functional consequences of these interactions for the polymer remain poorly understood. Herein, we show that the C-terminal TPR region of PgaA interacts with the de-N-acetylase domain of PgaB, and increases its deacetylase activity. Additionally, we found that when the two proteins form a complex, the glycoside hydrolase activity of PgaB is also increased. To better understand structure-function relationships we determined the crystal structure of a stable TPR module, which has a conserved groove formed by three repeat motifs. Tryptophan quenching, mass spectrometry analysis and molecular dynamics simulation studies suggest that the crystallized TPR module can bind PNAG/dPNAG via its electronegative groove on the concave surface, and potentially guide the polymer through the periplasm towards the porin for export. Our results suggest a scaffolding role for the TPR domain that combines PNAG/dPNAG translocation with the modulation of its chemical structure by PgaB.


Asunto(s)
Proteínas Periplasmáticas , Repeticiones de Tetratricopéptidos , Amidohidrolasas/metabolismo , Biopelículas , Proteínas Periplasmáticas/metabolismo , Polímeros
3.
Bioconjug Chem ; 35(1): 80-91, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38112314

RESUMEN

Mass cytometry permits the high dimensional analysis of complex biological samples; however, some techniques are not yet integrated into the mass cytometry workflow due to reagent availability. The use of self-labeling protein systems, such as HaloTag, are one such application. Here, we describe the design and implementation of the first mass cytometry ligands for use with HaloTag. "Click"-amenable HaloTag warheads were first conjugated onto poly(l-lysine) or poly(acrylic acid) polymers that were then functionalized with diethylenetriaminepentaacetic acid (DTPA) lutetium metal chelates. Kinetic analysis of the HaloTag labeling rates demonstrated that the structure appended to the 1-chlorohexyl warhead was key to success. A construct with a diethylene glycol spacer appended to a benzamide gave similar rates (kobs ∼ 102 M-1 s-1), regardless of the nature of the polymer. Comparison of the polymer with a small molecule chelate having rapid HaloTag labeling kinetics (kobs ∼ 104 M-1 s-1) suggests the polymers significantly reduced the HaloTag labeling rate. HEK293T cells expressing surface-exposed GFP-HaloTag fusions were labeled with the polymeric constructs and 175Lu content measured by cytometry by time-of-flight (CyTOF). Robust labeling was observed; however, significant nonspecific binding of the constructs to cells was also present. Heavily pegylated polymers demonstrated that nonspecific binding could be reduced to allow cells bearing the HaloTag protein to be distinguished from nonexpressing cells.


Asunto(s)
Hidrolasas , Polímeros , Proteínas , Humanos , Ligandos , Cinética , Células HEK293
4.
Nat Methods ; 17(3): 335-342, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066960

RESUMEN

Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, KrasG12D and Trp53R172H cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids.


Asunto(s)
Biomimética , Neoplasias Colorrectales/patología , Regulación de la Expresión Génica , Intestino Delgado/citología , Organoides/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Técnicas de Cocultivo/métodos , Neoplasias Colorrectales/metabolismo , Citofotometría/métodos , Enterocitos/citología , Células Enteroendocrinas/citología , Femenino , Fibroblastos/citología , Células Caliciformes/citología , Humanos , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Células de Paneth/citología , Análisis de la Célula Individual/métodos , Compuestos de Sulfhidrilo/química , Proteína p53 Supresora de Tumor/metabolismo
5.
Bioconjug Chem ; 34(12): 2358-2365, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051144

RESUMEN

Aldehydes are attractive bioorthogonal coupling partners. The ease of manipulation of aldehydes and their orthogonality to other classes of bioorthogonal reactions have inspired the exploration of chemistries, which generate irreversible conjugates. Similarly, nitrones have been shown to be potent 1,3-dipoles in bioorthogonal reactions when paired with strained alkynes. Here, we combine the reactivity of nitrones with the simplicity of aldehydes using an N-allylglyoxylamide, in a cascade reaction with an N-alkylhydroxylamine to produce a bicyclic isoxazolidine. The reaction is found to be catalyzed by 5-methoxyanthranilic acid and proceeds at pH 7 with favorable kinetics. Using the HaloTag7 protein bearing an N-alkylhydroxylamine, we show the reaction to be bioorthogonal in a complex cell lysate and to proceed well at the surface of a HEK293 cell. Furthermore, the reaction is compatible with a typical strain-promoted alkyne-azide click reaction. The characteristics of this reaction suggest it will be a useful addition to the pallet of bioorthogonal reactions that have revolutionized chemical biology.


Asunto(s)
Óxidos de Nitrógeno , Proteínas , Humanos , Células HEK293 , Proteínas/química , Óxidos de Nitrógeno/química , Alquinos/química , Aldehídos , Azidas/química , Reacción de Cicloadición
6.
Chembiochem ; 23(20): e202200284, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36040838

RESUMEN

Target engagement and the biodistribution of exogenously administered small molecules is rarely homogenous. Methods to determine the biodistribution at the cellular level are limited by the ability to detect the small molecule and simultaneously identify the cell types or tissue structures with which it is associated. The highly multiplexed nature of mass cytometry could facilitate these studies provided a heavy isotope label was available in the molecule of interest. Here we show it is possible to append a tellurophene to a known chemotherapeutic, teniposide, to follow this molecule in vivo. A semi-synthetic approach offers an efficient route to the teniposide analogue which is found to have similar characteristics when compared with the parent teniposide in vitro. Using mass cytometry we find the teniposide analogue has significant nonspecific binding to cells. In vivo the tellurium bearing teniposide produces the expected DNA damage in a PANC-1 xenograft model. The distribution of Te in the tissue is near the limits of detection and further work will be required to characterize the localization of this analogue with respect to cell type distributions.


Asunto(s)
Telurio , Tenipósido , Humanos , Distribución Tisular , Daño del ADN
7.
Proc Natl Acad Sci U S A ; 116(17): 8155-8160, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971489

RESUMEN

Protein synthesis is central to maintaining cellular homeostasis and its study is critical to understanding the function and dysfunction of eukaryotic systems. Here we report L-2-tellurienylalanine (TePhe) as a noncanonical amino acid for direct measurement of protein synthesis. TePhe is synthetically accessible, nontoxic, stable under biological conditions, and the tellurium atom allows its direct detection with mass cytometry, without postexperiment labeling. TePhe labeling is competitive with phenylalanine but not other large and aromatic amino acids, demonstrating its molecular specificity as a phenylalanine mimic; labeling is also abrogated in vitro and in vivo by the protein synthesis inhibitor cycloheximide, validating TePhe as a translation reporter. In vivo, imaging mass cytometry with TePhe visualizes translation dynamics in the mouse gut, brain, and tumor. The strong performance of TePhe as a probe for protein synthesis, coupled with the operational simplicity of its use, suggests TePhe could become a broadly applied molecule for measuring translation in vitro and in vivo.


Asunto(s)
Citometría de Flujo/métodos , Citometría de Imagen/métodos , Fenilalanina/química , Biosíntesis de Proteínas/fisiología , Telurio/química , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cicloheximida/farmacología , Células HCT116 , Humanos , Yeyuno/diagnóstico por imagen , Yeyuno/metabolismo , Células Jurkat , Ratones , Neoplasias Experimentales , Fenilalanina/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Telurio/metabolismo
8.
J Biol Chem ; 295(34): 11949-11962, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32601062

RESUMEN

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Carbohidrato Epimerasas/metabolismo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Pseudomonas/fisiología , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , Polisacáridos Bacterianos/genética , Uridina Difosfato N-Acetilglucosamina/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
9.
Chembiochem ; 22(14): 2449-2456, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34003548

RESUMEN

Tellurium is a versatile heavy chalcogen with numerous applications in chemical biology, providing valuable probes in mass cytometry, fluorescence imaging and structural biology. L-Tellurienylalanine (TePhe) is an analogue of the proteinogenic amino acid L-phenylalanine (Phe) in which the phenyl side chain has been replaced by a 5-membered tellurophene moiety. High incorporation level of TePhe in expressed proteins at defined sites is expected to facilitate studies in proteomics, protein NMR spectroscopy, and structure elucidation. As a model we chose immunoglobulin-binding Protein G, B1 domain (GB1) to validate TePhe as a suitable structural analogue for Phe. We demonstrate that approximately 1 in 2 of all Phe sites within GB1 can be substituted with TePhe through expression in standard non-Phe-auxotrophic E. coli in Phe-deficient media containing glyphosate, an inhibitor of aromatic amino acid biosynthesis. The TePhe content of the GB1 sample can be further increased to 85 % through HPLC. Using NMR and CD spectroscopy, we confirm that the Phe-to-TePhe substitution has negligible impact on the global structure and stability of GB1.


Asunto(s)
Escherichia coli
10.
Chembiochem ; 22(3): 532-538, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32897623

RESUMEN

Multiparametric single-cell analysis has seen dramatic improvements with the introduction of mass cytometry (MC) and imaging mass cytometry (IMC™ ). These technologies expanded the number of biomarkers that can be identified simultaneously by using heavy-isotope-tagged antibody reagents. Small-molecule probes bearing heavy isotopes are emerging as additional useful functional reporters of cellular features. Realizing this, we explored the iodination of DAPI to produce a heavy-atom-substituted derivative of the commonly used fluorescent DNA stain. Although exhibiting a drastically reduced fluorescence emission profile, I-DAPI retains strong binding affinity for DNA. I-DAPI was used to detect cellular DNA in MC and IMC™ assays with comparable efficiency to known Ir-containing DNA intercalators. This work suggests repurposing well-known colorimetric stains through simple reactions could be an effective strategy to develop new, functional MC and IMC™ reagents.


Asunto(s)
ADN/análisis , Citometría de Flujo , Colorantes Fluorescentes/química , Indicadores y Reactivos/química , Indoles/química , Animales , Línea Celular , Halogenación , Humanos , Ratones , Estructura Molecular , Imagen Óptica , Espectrometría de Fluorescencia
11.
J Biol Chem ; 294(37): 13833-13849, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31416836

RESUMEN

Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (ß/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.


Asunto(s)
Aspergillus fumigatus/metabolismo , Glicósido Hidrolasas/genética , Hexosaminidasas/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestructura , Biopelículas/efectos de los fármacos , Cristalografía por Rayos X/métodos , Proteínas Fúngicas/genética , Hongos/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosaminidasas/farmacología , Hexosaminidasas/ultraestructura , Polisacáridos/metabolismo , Virulencia
12.
Chembiochem ; 21(8): 1136-1139, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31742805

RESUMEN

Mass cytometry (MC) and imaging mass cytometry (IMCTM ) have emerged as important tools for the study of biological heterogeneity. We recently demonstrated the use of l-2-tellurienylalanine (TePhe), a mimic of phenylalanine (Phe), as an MC- and IMC-compatible protein synthesis reporter. In this work, the biochemical similarity of TePhe and its cognate analogue, Phe, are examined in the context of the RNase S complex. Isothermal titration calorimetry studies show that incorporation of TePhe preserves the interaction of S-peptide with S-protein, and the dissociation constants for the interaction of the Phe and TePhe peptides are within a factor of two. The resulting RNase S complex is catalytically active without significant alterations in the enzyme's kinetic parameters. Furthermore, circular dichroism spectroscopy does not reveal any changes to the secondary structure of TePhe-substituted RNase S. These findings provide strong evidence that TePhe functions as a Phe isostere in the context of a folded protein. It is anticipated that incorporation of TePhe into peptides or peptidomimetic scaffolds will enable facile generation of MC and IMCTM probes.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Fenilalanina/análogos & derivados , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/metabolismo , Telurio/química , Secuencia de Aminoácidos , Cinética , Fragmentos de Péptidos/química , Ribonucleasa Pancreática/química , Ribonucleasas/química
13.
PLoS Pathog ; 14(4): e1006998, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684093

RESUMEN

Poly-ß(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections.


Asunto(s)
Amidohidrolasas/metabolismo , Biopelículas/crecimiento & desarrollo , Bordetella/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glicósido Hidrolasas/metabolismo , beta-Glucanos/química , Acetilación , Amidohidrolasas/química , Bordetella/crecimiento & desarrollo , Cristalografía por Rayos X , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Glicósido Hidrolasas/química , Operón , Conformación Proteica , beta-Glucanos/metabolismo
14.
Chemistry ; 26(16): 3479-3483, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31910290

RESUMEN

The fluorescence enhancement ("turn-on") response of the amyloid-sensing dye thioflavin T (ThT) is examined in vacuo, where solvent interactions are absent. Upon the complexation of ThT with a derivatized ß-cyclodextrin, heptakis-[6-deoxy-6-(3-sulfanylpropanoic acid)]-ß-cyclodextrin, turn-on responses in both the gas phase and solution phase were observed. In contrast, turn-on response was not detected when ThT was bound to gaseous cucurbit[7]uril or human telomeric DNA 22AG, whereas clear turn-on response occurs in solution. The observed difference in turn-on response in the gas phase emphasizes the key interplay between chromophore, host and solvent and demonstrates the utility of gas-phase spectroscopy to tease out the balance among intermolecular forces driving the behavior of important chromophores in solution.

15.
Anal Biochem ; 600: 113743, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32325083

RESUMEN

Male and female immune systems are strikingly different and yet little is known about sex differences in immune glycans, though glycans play central roles in regulating the immune response. Polysialic acid (polySia) occurs on the majority of leukocytes and is a potent immunomodulatory glycan which enables cell migration and serves as an immune checkpoint. Due to widespread influence of polySia on the immune system, we aimed to characterize its levels in serum, its presence on specific proteins, and differences in the amounts of polySia in male and female serum. However, polySia is difficult to quantify and detect on specific proteins, which makes it challenging to elucidate the molecular details of polySia function. We developed a sandwich ELISA that allows for the quantification of polySia as well as specific polysialylated proteins in complex mixtures without any pretreatment or harsh conditions. The assay is quick, linear, and robust under a wide variety of conditions and gave a limit of detection of approximately 0.2 ng polySia per mL of serum. We then quantified polySia and polysialylated CD56 in human and mouse serum. These studies strongly support our hypothesis of differences in glycosylation between the sexes as significantly less polySia was observed in female samples than in male samples.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Ácidos Siálicos/sangre , Animales , Femenino , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales , Ácidos Siálicos/inmunología
16.
Bioconjug Chem ; 30(11): 2805-2810, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31693335

RESUMEN

An enzyme-catalyzed reporter deposition stain has been developed for Imaging Mass Cytometry (IMC). The reagent consists of an alkaline phosphatase substrate tethered to a tellurophene which serves as reporter group for mass cytometry. Upon phosphate hydrolysis, a quinone methide is released which covalently labels local nucleophiles. This strategy is a useful complement to heavy isotope antibody conjugates as it facilitates signal amplification for low-abundance biomarker detection. The workflow is conveniently integrated with standard IMC antibody staining to allow multiparametric antigen detection.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Anhidrasa Carbónica IX/metabolismo , Neoplasias del Colon/metabolismo , Citometría de Imagen/métodos , Indolquinonas/química , Animales , Anhidrasa Carbónica IX/química , Neoplasias del Colon/patología , Humanos , Ratones , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Org Biomol Chem ; 17(43): 9456-9466, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31642455

RESUMEN

Many clinically-relevant biofilm-forming bacterial strains produce partially de-N-acetylated poly-ß-(1→6)-N-acetyl-d-glucosamine (dPNAG) as an exopolysaccharide. In Gram-negative bacteria, the periplasmic protein PgaB is responsible for partial de-N-acetylation of PNAG prior to its export to the extracellular space. In addition to de-N-acetylase activity found in the N-terminal domain, PgaB contains a C-terminal hydrolase domain that can disrupt dPNAG-dependent biofilms and hydrolyzes dPNAG but not fully acetylated PNAG. The role of this C-terminal domain in biofilm formation has yet to be determined in vivo. Further characterization of the enzyme's hydrolase activity has been hampered by a lack of specific dPNAG oligosaccharides. Here, we report the synthesis of a defined mono de-N-acetylated dPNAG penta- and hepta-saccharide. Using mass spectrometry analysis and a fluorescence-based thin-layer chromatography (TLC) assay, we found that our defined dPNAG oligosaccharides are hydrolase substrates. In addition to the expected cleavage site, two residues to the reducing side of the de-N-acetylated residue, minor cleavage products on the non-reducing side of the de-N-acetylation site were observed. These findings provide quantitative data to support how PNAG is processed in Gram-negative bacteria.


Asunto(s)
Acetilglucosamina/farmacología , Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Oligosacáridos/farmacología , Acetilación , Acetilglucosamina/síntesis química , Acetilglucosamina/química , Biopelículas/efectos de los fármacos , Hidrólisis , Conformación Molecular , Oligosacáridos/síntesis química , Oligosacáridos/química
18.
Cytometry A ; 93(7): 685-694, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30053343

RESUMEN

Mass cytometry is a revolutionary technology that allows for the simultaneous quantification of >40 different biomarkers with cellular resolution. The biomarkers are detected using metal-labeled antibodies as well as small-molecule probes of cell size, viability, and biochemical status. Barcoding is an important component of sample preparation because it reduces processing time, eliminates sample-to-sample variation, discriminates cell doublets, reduces the amount of antibody needed, and conserves sample. We developed a thiol-reactive tellurium-based barcode, TeMal. TeMal is nontoxic at working concentrations, compatible with metal-labeled antibodies, and can readily be applied to live or fixed cells, making it advantageous and complementary compared to existing barcoding reagents. We have demonstrated the utility of TeMal by barcoding microscale samples in situ to facilitate analysis of cells from an automated cell culture system using mass cytometry.


Asunto(s)
Citometría de Flujo/métodos , Análisis de la Célula Individual/métodos , Coloración y Etiquetado/métodos , Telurio/química , Anticuerpos/química , Biomarcadores/química , Humanos
19.
Chemistry ; 24(17): 4459-4467, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29389050

RESUMEN

Using covalent capture, a high yielding selective mono-functionalization of heptakis-[6-deoxy-6-(2-aminoethylsulfanyl)]-ß-CD with a 5-mercaptopentyl functional group has been achieved. Here, we demonstrate the immobilization of the mono-thiol functionalized ß-CD on PEGA resin via a disulfide bond, enabling solid-phase elaboration of the remaining six primary amines. To showcase the potential of this method, the amines were elaborated to tripeptides through standard Fmoc-peptide chemistry. A small library of CD-tripeptide conjugates was generated which, when reduced from the solid support, could be tagged at the released thiol with an environmentally sensitive fluorophore. The resulting library of sensors showed potential for the differential sensing of various bile salts. The described methodology provides a rapid and versatile route to synthesize highly functionalized libraries of CD derivatives that may be tailored towards applications in sensing, catalysis, and multivalent displays.


Asunto(s)
Técnicas de Síntesis en Fase Sólida/métodos , beta-Ciclodextrinas/síntesis química , Resinas Acrílicas/química , Aminas/química , Colorantes Fluorescentes/química , Estructura Molecular , Oligopéptidos/química , Polietilenglicoles/química , Espectrometría de Fluorescencia/métodos , Compuestos de Sulfhidrilo/química
20.
Bioorg Med Chem ; 26(21): 5631-5643, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30344002

RESUMEN

The Carbohydrate Esterase family 4 contains virulence factors which modify peptidoglycan and biofilm-related exopolysaccharides. Despite the importance of this family of enzymes, a potent mechanism-based inhibition strategy has yet to emerge. Based on the postulated tridentate binding mode of the tetrahedral de-N-acetylation intermediate, GlcNAc derivatives bearing metal chelating groups at the 2 and 3 positions were synthesized. These scaffolds include 2-C phosphonate, 2-C sulfonamide, 2-thionoacetamide warheads as well as derivatives bearing thiol, amine and azide substitutions at the 3-position. The inhibitors were assayed against a representative peptidoglycan deacetylase, Pgda from Streptococcus pneumonia, and a representative biofilm-related exopolysaccharide deacetylase, PgaB from Escherichia coli. Of the inhibitors evaluated, the 3-thio derivatives showed weak to moderate inhibition of Pgda. The strongest inhibitor was benzyl 2,3-dideoxy-2-thionoacetamide-3-thio-ß-d-glucoside, whose inhibitory potency showed an unexpected dependence on metal concentration and was found to have a partial mixed inhibition mode (Ki = 2.9 ±â€¯0.6 µM).


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Glucósidos/farmacología , Quelantes/síntesis química , Quelantes/química , Quelantes/farmacología , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Glucósidos/síntesis química , Glucósidos/química , Cinética , Estereoisomerismo , Streptococcus pneumoniae/enzimología , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA