Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 51(18): 7883-7943, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35993776

RESUMEN

Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.


Asunto(s)
Carbonato de Calcio , Nanocompuestos , Materiales Biocompatibles , Carbonato de Calcio/química , Emulsiones , Hidrogeles , Minerales , Plásticos , Agua/química
2.
Int J Endocrinol ; 2020: 3646342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148488

RESUMEN

OBJECTIVE: To investigate the effect of intensive management and achieving the target control more than 3 times on endpoint events during 9 consecutive years' annual assessment in type 2 diabetes (T2DM) patients in the Sanlitun Community Health Service Center in Beijing, including blood glucose, blood pressure, lipids profiles, and the joint target control. METHODS: In Beijing Community Diabetes Study (BCDS), 224 patients with T2DM from the Sanlitun Community Health Service Center were enrolled in 2008. All patients were randomly assigned to the intensive management group (n = 113) and the standard management group (n = 113) and the standard management group (. RESULTS: During the nine-year follow-up, the abscission number was 35 (14.29%), among which 14 (12.39%) was in the intensive management group and 21 (18.92%) was in the standard management group. The incidence of diabetic retinopathy (6 cases, 5.41%) and diabetic nephropathy (13 cases, 11.71%) in the standard management group was significantly higher than that in the intensive management group (1 case, 0.88%; 5 cases, 4.42%), respectively (P < 0.05). However, there were no significant differences on the other endpoint events between the two groups (P < 0.05). However, there were no significant differences on the other endpoint events between the two groups (P < 0.05). However, there were no significant differences on the other endpoint events between the two groups (P < 0.05). However, there were no significant differences on the other endpoint events between the two groups (P < 0.05). However, there were no significant differences on the other endpoint events between the two groups (. CONCLUSIONS: The intensive management can effectively reduce the occurrence of microvascular complications. The incidence of all-cause death and the other endpoint events decreased in T2DM patients who achieved the joint target control more than 3 times during the nine-year management, which improved survival time and life quality. This trial is registered with ChiCTR-TRC-13003978 and ChiCTR-OOC-15006090.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA