Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Asian Nat Prod Res ; : 1-13, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37897053

RESUMEN

Morinda officinalis is a traditional Chinese tonic herb, and have been used in the treatment of multiple diseases. Here, three iridoid glycosides isolated from M. officinalis were evaluated for their roles in the autophagy-lysosomal pathway. All three iridoid glycosides could induce TFEB/TFE3-mediated lysosomal biogenesis and trigger autophagy. Interestingly, they promoted the nuclear import of TFEB/TFE3 without affecting their nuclear export, suggesting their role in the maintenance of lysosomal homeostasis. The results from this study shed light on the identification of autophagy activators from M. officinalis and provide a basis for developing them in the treatment of oxidative stress-involved diseases.

2.
Biochem Biophys Res Commun ; 526(3): 764-771, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32265032

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling is involved in glucose and lipid metabolism, but the mechanism is not clear yet. AIM: The objective is to study mechanisms of Wnt/ß-catenin signaling on regulating hepatocytes metabolism. METHODS: Real-time qPCR, Western blot, and Oil-red O staining methods were used. RESULTS: The Wnt/ß-catenin signaling was activated in hepatocytes by CP21R7, and the level of phosphorylated IRS-1 (Ser307) and TRB3 were significantly increased, while the levels of phosphorylated IRS-1 (Tyr612) and phosphorylated Akt were decreased. Moreover, the expression of FGF21, FAS, SCD1, PPARγ and ADRP was significantly increased. The expression of ATF4, ATF5, eIF2α, GRP78, CHOP and phosphorylated level of PERK were also increased. The expression of FGF21 and TRB3 was significantly down-regulated, and the lipid droplets were notably reduced after the ER stress was inhibited by TUDCA. The expression of FGF21 was significantly decreased when the IRE1 pathway of the UPR was inhibited by STF-083010. CONCLUSIONS: Activation of Wnt/ß-catenin signaling pathway could cause insulin resistance and lipogenesis in hepatocytes via regulation of the IRE1 pathway of the ER stress and UPR, providing new targets for the treatment of metabolic disorders.


Asunto(s)
Estrés del Retículo Endoplásmico , Hepatocitos , Resistencia a la Insulina , Lipogénesis , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Regulación hacia Abajo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sulfonamidas/metabolismo , Tiofenos/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
3.
Biomed Pharmacother ; 170: 115936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039755

RESUMEN

Isogarcinol (ISO), a cytotoxic polycyclic polyprenylated acylphloroglucinol isolated from the edible fruits of Garcinia multiflora. However, synergistic combination of ISO and dexamethasone (DEX) to overcome leukemia glucocorticoid resistance has never been investigated. Therefore, in this study, the effects of ISO in combination with DEX was conducted on leukemia in vivo and glucocorticoid resistance in vitro. As a result, the combination of the two compounds could efficiently inhibit leukemia progression in mice and reverse DEX resistance in acute lymphoblastic leukemia (ALL) Jurkat cells. Significantly, our findings indicated that c-Myc may be a potential target of ISO, as it is involved in cell cycle arrest and apoptosis by the combination of ISO and DEX in Jurkat cells. Furthermore, western blot analysis revealed that ISO and DEX inhibits the PI3K/Akt/mTOR signaling pathway and promotes the nuclear translocation of glucocorticoid receptor (GR), which activates target genes NR3C1 and TSC22D3, leading to apoptosis in Jurkat cells. Hence, our results suggest that ISO, as a safe and effective food-derived agent, can enhance the anti-leukemia effects of DEX.


Asunto(s)
Garcinia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo , Dexametasona/farmacología , Frutas , Fosfatidilinositol 3-Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Apoptosis
4.
Phytochemistry ; 223: 114106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657885

RESUMEN

Daphmacrimines A-K (1-11) were isolated from the leaves and stems of Daphniphyllum macropodum Miq. Their structures and stereochemistries were determined by extensive techniques, including HRESIMS, NMR, ECD, IR, and single-crystal X-ray crystallography. Daphmacrimines A-D (1-4) are unprecedented Daphniphyllum alkaloids with a 2-oxazolidinone ring. Daphmacrimine I (9) contains a nitrile group, which is relatively rare in naturally occurring alkaloids. The abilities of daphmacrimines A-D and daphmacrimines G-K to enhance lysosomal biogenesis were evaluated through LysoTracker Red staining. Daphmacrimine K (11) can induce lysosomal biogenesis and promote autophagic flux.


Asunto(s)
Alcaloides , Daphniphyllum , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Estructura Molecular , Daphniphyllum/química , Hojas de la Planta/química , Humanos , Cristalografía por Rayos X , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Tallos de la Planta/química , Conformación Molecular
5.
Phytomedicine ; 112: 154720, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868108

RESUMEN

BACKGROUND: Macroautophagy (henceforth autophagy) is the major form of autophagy, which delivers intracellular cargo to lysosomes for degradation. Considerable research has revealed that the impairment of lysosomal biogenesis and autophagic flux exacerbates the development of autophagy-related diseases. Therefore, reparative medicines restoring lysosomal biogenesis and autophagic flux in cells may have therapeutic potential against the increasing prevalence of these diseases. PURPOSE: The aim of the present study was thus to explore the effect of trigonochinene E (TE), an aromatic tetranorditerpene isolated from Trigonostemon flavidus, on lysosomal biogenesis and autophagy and to elucidate the potential underlying mechanism. METHODS: Four human cell lines, HepG2, nucleus pulposus (NP), HeLa and HEK293 cells were applied in this study. The cytotoxicity of TE was evaluated by MTT assay. Lysosomal biogenesis and autophagic flux induced by 40 µM TE were analyzed using gene transfer techniques, western blotting, real-time PCR and confocal microscopy. Immunofluorescence, immunoblotting and pharmacological inhibitors/activators were applied to determine the changes in the protein expression levels in mTOR, PKC, PERK, and IRE1α signaling pathways. RESULTS: Our results showed that TE promotes lysosomal biogenesis and autophagic flux by activating the transcription factors of lysosomes, transcription factor EB (TFEB) and transcription factor E3 (TFE3). Mechanistically, TE induces TFEB and TFE3 nuclear translocation through an mTOR/PKC/ROS-independent and endoplasmic reticulum (ER) stress-mediated pathway. The PERK and IRE1α branches of ER stress are crucial for TE-induced autophagy and lysosomal biogenesis. Whereas TE activated PERK, which mediated calcineurin dephosphorylation of TFEB/TFE3, IRE1α was activated and led to inactivation of STAT3, which further enhanced autophagy and lysosomal biogenesis. Functionally, knockdown of TFEB or TFE3 impairs TE-induced lysosomal biogenesis and autophagic flux. Furthermore, TE-induced autophagy protects NP cells from oxidative stress to ameliorate intervertebral disc degeneration (IVDD). CONCLUSIONS: Here, our study showed that TE can induce TFEB/TFE3-dependent lysosomal biogenesis and autophagy via the PERK-calcineurin axis and IRE1α-STAT3 axis. Unlike other agents regulating lysosomal biogenesis and autophagy, TE showed limited cytotoxicity, thereby providing a new direction for therapeutic opportunities to use TE to treat diseases with impaired autophagy-lysosomal pathways, including IVDD.


Asunto(s)
Endorribonucleasas , Núcleo Pulposo , Humanos , Calcineurina , Células HEK293 , Proteínas Serina-Treonina Quinasas , Estrés Oxidativo , Autofagia , Lisosomas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
6.
Heliyon ; 8(10): e11179, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36325146

RESUMEN

Lysosomal biogenesis is an essential adaptive process by which lysosomes exert their function in maintaining cellular homeostasis. Defects in lysosomal enzymes and functions lead to lysosome-related diseases, including lysosomal storage diseases and neurodegenerative disorders. Thus, activation of the autophagy-lysosomal pathway, especially induction of lysosomal biogenesis, might be an effective strategy for the treatment of lysosome-related diseases. In this study, we established a lysosome-based screening system to identify active compounds from natural products that could promote lysosomal biogenesis. The subcellular localizations of master transcriptional regulators of lysosomal genes, TFEB, TFE3 and ZKSCAN3 were examined to reveal the potential mechanisms. More than 200 compounds were screened, and we found that Hdj-23, a triterpene isolated from Walsura cochinchinensis, induced lysosomal biogenesis via activation of TFEB/TFE3. In summary, this study introduced a lysosome-based live cell screening strategy to identify bioactive compounds that promote lysosomal biogenesis, which would provide potential candidate enhancers of lysosomal biogenesis and novel insight for treating lysosome-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA