Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolism ; 153: 155796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38262576

RESUMEN

Imeglimin is a recently developed anti-diabetic drug that could concurrently promote insulin secretion and insulin sensitivity, while its mechanisms of action are not fully understood. Here we show that imeglimin administration could protect mice from high fat diet-induced weight gain with enhanced energy expenditure and attenuated whitening of brown adipose tissue. Imeglimin administration led to significant alteration of gut microbiota, which included an increase of Akkermansia genus, with attenuation of obesity-associated gut pathologies. Ablation of microbiota by antibiotic treatment partially abrogated the insulin sensitizing effects of imeglimin, while not affecting its actions on body weight gain or brown adipose tissue. Collectively, our results characterize imeglimin as a potential agent promoting energy expenditure and gut integrity, providing new insights into its mechanisms of action.


Asunto(s)
Microbioma Gastrointestinal , Triazinas , Animales , Ratones , Tejido Adiposo Pardo , Ratones Obesos , Obesidad/tratamiento farmacológico , Aumento de Peso
2.
Biomed Pharmacother ; 149: 112864, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367765

RESUMEN

Under the dysfunction of mitochondria, cancer cells preferentially utilize both glycolytic and pentose phosphate pathways rather than electron transport chains to desperately generate adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), classically recognized as the Warburg effect. Based on this background, the present study tested the hypothesis that anti-diabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors would exert a tumor-suppressive impact on intractable human hematological malignancies via the modulation of glucose metabolism within cells and cell cycles. The level of mRNA for SGLT2 was remarkably elevated in leukemic cells from patients with adult T-cell leukemia (ATL), one of the most intractable blood cancers in humans, and as well as in two kinds of ATL cell lines (MT-1 and MT-2). Two kinds of SGLT2 inhibitors, Luseogliflozin and Tofogliflozin substantially suppressed the proliferation of MT-1 and MT-2 cells in both adherent and anchorage-independent culture conditions. Such a suppressive effect on tumor cell growth was reproduced by Luseogliflozin in leukemic cells in peripheral blood from patients with ATL. In MT-2 cells, both of SGLT2 inhibitors considerably attenuated glucose uptake, intracellular ATP levels, and NADPH production, resultantly enhancing cell cycle arrest at the G0/G1 phase. From the standpoint of metabolic oncology, the present study suggests that SGLT2 inhibitors would be a promising adjunctive option for the treatment of the most intractable human hematological malignancies like ATL.


Asunto(s)
Neoplasias Hematológicas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adenosina Trifosfato , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , NADP/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA