Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(7): 1785-1800.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333025

RESUMEN

All proteins interact with other cellular components to fulfill their function. While tremendous progress has been made in the identification of protein complexes, their assembly and dynamics remain difficult to characterize. Here, we present a high-throughput strategy to analyze the native assembly kinetics of protein complexes. We apply our approach to characterize the co-assembly for 320 pairs of nucleoporins (NUPs) constituting the ≈50 MDa nuclear pore complex (NPC) in yeast. Some NUPs co-assemble fast via rapid exchange whereas others require lengthy maturation steps. This reveals a hierarchical principle of NPC biogenesis where individual subcomplexes form on a minute timescale and then co-assemble from center to periphery in a ∼1 h-long maturation process. Intriguingly, the NUP Mlp1 stands out as joining very late and associating preferentially with aged NPCs. Our approach is readily applicable beyond the NPC, making it possible to analyze the intracellular dynamics of a variety of multiprotein assemblies.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado , Bioensayo , Cinética , Modelos Biológicos , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
2.
Cell ; 179(6): 1255-1263.e12, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778652

RESUMEN

The living world is largely divided into autotrophs that convert CO2 into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO2 as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO2. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO2 fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.


Asunto(s)
Biomasa , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Adaptación Fisiológica/genética , Aminoácidos/metabolismo , Procesos Autotróficos/fisiología , Isótopos de Carbono , Evolución Molecular Dirigida , Escherichia coli/genética , Marcaje Isotópico , Ingeniería Metabólica , Análisis de Flujos Metabólicos , Mutación/genética
3.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307493

RESUMEN

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Asunto(s)
Metaboloma , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal , Programas Informáticos , Regulación Alostérica , Sitios de Unión , Escherichia coli , Metabolómica/métodos , Unión Proteica , Mapas de Interacción de Proteínas , Proteoma/química , Saccharomyces cerevisiae , Análisis de Secuencia de Proteína/métodos
4.
Cell ; 166(1): 115-25, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27345370

RESUMEN

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Asunto(s)
Dióxido de Carbono/metabolismo , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconeogénesis , Redes y Vías Metabólicas , Procesos Autotróficos , Carbohidratos/biosíntesis , Escherichia coli/crecimiento & desarrollo , Espectrometría de Masas
5.
EMBO J ; 43(14): 3072-3083, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806660

RESUMEN

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Cinética , Dióxido de Carbono/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/enzimología , Cianobacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Bacterias/genética
6.
Proc Natl Acad Sci U S A ; 120(10): e2204892120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848563

RESUMEN

Wild mammals are icons of conservation efforts, yet there is no rigorous estimate available for their overall global biomass. Biomass as a metric allows us to compare species with very different body sizes, and can serve as an indicator of wild mammal presence, trends, and impacts, on a global scale. Here, we compiled estimates of the total abundance (i.e., the number of individuals) of several hundred mammal species from the available data, and used these to build a model that infers the total biomass of terrestrial mammal species for which the global abundance is unknown. We present a detailed assessment, arriving at a total wet biomass of ≈20 million tonnes (Mt) for all terrestrial wild mammals (95% CI 13-38 Mt), i.e., ≈3 kg per person on earth. The primary contributors to the biomass of wild land mammals are large herbivores such as the white-tailed deer, wild boar, and African elephant. We find that even-hoofed mammals (artiodactyls, such as deer and boars) represent about half of the combined mass of terrestrial wild mammals. In addition, we estimated the total biomass of wild marine mammals at ≈40 Mt (95% CI 20-80 Mt), with baleen whales comprising more than half of this mass. In order to put wild mammal biomass into perspective, we additionally estimate the biomass of the remaining members of the class Mammalia. The total mammal biomass is overwhelmingly dominated by livestock (≈630 Mt) and humans (≈390 Mt). This work is a provisional census of wild mammal biomass on Earth and can serve as a benchmark for human impacts.


Asunto(s)
Caniformia , Ciervos , Humanos , Animales , Porcinos , Biomasa , Cetáceos , Sus scrofa
7.
Proc Natl Acad Sci U S A ; 120(44): e2308511120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871201

RESUMEN

The immune system is a complex network of cells with critical functions in health and disease. However, a comprehensive census of the cells comprising the immune system is lacking. Here, we estimated the abundance of the primary immune cell types throughout all tissues in the human body. We conducted a literature survey and integrated data from multiplexed imaging and methylome-based deconvolution. We also considered cellular mass to determine the distribution of immune cells in terms of both number and total mass. Our results indicate that the immune system of a reference 73 kg man consists of 1.8 × 1012 cells (95% CI 1.5-2.3 × 1012), weighing 1.2 kg (95% CI 0.8-1.9). Lymphocytes constitute 40% of the total number of immune cells and 15% of the mass and are mainly located in the lymph nodes and spleen. Neutrophils account for similar proportions of both the number and total mass of immune cells, with most neutrophils residing in the bone marrow. Macrophages, present in most tissues, account for 10% of immune cells but contribute nearly 50% of the total cellular mass due to their large size. The quantification of immune cells within the human body presented here can serve to understand the immune function better and facilitate quantitative modeling of this vital system.


Asunto(s)
Cuerpo Humano , Linfocitos , Masculino , Humanos , Ganglios Linfáticos , Bazo , Macrófagos
8.
Nucleic Acids Res ; 50(D1): D603-D609, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850162

RESUMEN

eQuilibrator (equilibrator.weizmann.ac.il) is a database of biochemical equilibrium constants and Gibbs free energies, originally designed as a web-based interface. While the website now counts around 1,000 distinct monthly users, its design could not accommodate larger compound databases and it lacked a scalable Application Programming Interface (API) for integration into other tools developed by the systems biology community. Here, we report on the recent updates to the database as well as the addition of a new Python-based interface to eQuilibrator that adds many new features such as a 100-fold larger compound database, the ability to add novel compounds, improvements in speed and memory use, and correction for Mg2+ ion concentrations. Moreover, the new interface can compute the covariance matrix of the uncertainty between estimates, for which we show the advantages and describe the application in metabolic modelling. We foresee that these improvements will make thermodynamic modelling more accessible and facilitate the integration of eQuilibrator into other software platforms.


Asunto(s)
Bases de Datos Factuales , Bases de Datos Genéticas , Programas Informáticos , Biología de Sistemas , Humanos , Internet , Iones/química , Magnesio/química , Redes y Vías Metabólicas/genética , Modelos Moleculares , Termodinámica , Interfaz Usuario-Computador
9.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155098

RESUMEN

Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Productos Agrícolas/crecimiento & desarrollo , Energía Solar , Luz Solar , Animales , Proteínas en la Dieta/metabolismo , Transferencia de Energía , Humanos
10.
Nucleic Acids Res ; 49(D1): D575-D588, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32986834

RESUMEN

For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical 'Rosetta Stone' to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


Asunto(s)
Bacterias/metabolismo , Bases de Datos Factuales , Hongos/metabolismo , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Plantas/metabolismo , Bacterias/genética , Genoma Bacteriano , Termodinámica
11.
Proc Natl Acad Sci U S A ; 117(52): 32910-32918, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376214

RESUMEN

Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.


Asunto(s)
Quimioinformática/métodos , Simulación de Dinámica Molecular , Azúcares/química , Aldehídos/química , Conformación de Carbohidratos , Ácidos Carboxílicos/química , Cetonas/química , Oxidación-Reducción
12.
Bioinformatics ; 37(18): 3064-3066, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33682879

RESUMEN

MOTIVATION: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables. RESULTS: We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible. AVAILABILITY AND IMPLEMENTATION: Our framework along with documentation is available on https://github.com/biosustain/multitfa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Escherichia coli , Programas Informáticos , Termodinámica , Documentación , Incertidumbre
14.
Proc Natl Acad Sci U S A ; 115(15): 3804-3809, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581251

RESUMEN

Food loss is widely recognized as undermining food security and environmental sustainability. However, consumption of resource-intensive food items instead of more efficient, equally nutritious alternatives can also be considered as an effective food loss. Here we define and quantify these opportunity food losses as the food loss associated with consuming resource-intensive animal-based items instead of plant-based alternatives which are nutritionally comparable, e.g., in terms of protein content. We consider replacements that minimize cropland use for each of the main US animal-based food categories. We find that although the characteristic conventional retail-to-consumer food losses are ≈30% for plant and animal products, the opportunity food losses of beef, pork, dairy, poultry, and eggs are 96%, 90%, 75%, 50%, and 40%, respectively. This arises because plant-based replacement diets can produce 20-fold and twofold more nutritionally similar food per cropland than beef and eggs, the most and least resource-intensive animal categories, respectively. Although conventional and opportunity food losses are both targets for improvement, the high opportunity food losses highlight the large potential savings beyond conventionally defined food losses. Concurrently replacing all animal-based items in the US diet with plant-based alternatives will add enough food to feed, in full, 350 million additional people, well above the expected benefits of eliminating all supply chain food waste. These results highlight the importance of dietary shifts to improving food availability and security.

15.
Metab Eng ; 57: 96-109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31491545

RESUMEN

Microbial biosensors are used to detect the presence of compounds provided externally or produced internally. The latter case is commonly constrained by the need to screen a large library of enzyme or pathway variants to identify those that can efficiently generate the desired compound. To address this limitation, we suggest the use of metabolic sensor strains which can grow only if the relevant compound is present and thus replace screening with direct selection. We used a computational platform to design metabolic sensor strains with varying dependencies on a specific compound. Our method systematically explores combinations of gene deletions and identifies how the growth requirement for a compound changes with the media composition. We demonstrate this approach by constructing a set of E. coli glycerate sensor strains. In each of these strains a different set of enzymes is disrupted such that central metabolism is effectively dissected into multiple segments, each requiring a dedicated carbon source. We find an almost perfect match between the predicted and experimental dependence on glycerate and show that the strains can be used to accurately detect glycerate concentrations across two orders of magnitude. Apart from demonstrating the potential application of metabolic sensor strains, our work reveals key phenomena in central metabolism, including spontaneous degradation of central metabolites and the importance of metabolic sinks for balancing small metabolic networks.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Ácidos Glicéricos , Ingeniería Metabólica , Redes y Vías Metabólicas , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Glicéricos/análisis , Ácidos Glicéricos/metabolismo
16.
Mol Syst Biol ; 14(11): e8623, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397005

RESUMEN

In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Glucosa/metabolismo , División Celular , Escherichia coli/citología , Metabolómica/métodos , Técnicas Analíticas Microfluídicas , Proteolisis , Análisis de la Célula Individual
17.
PLoS Comput Biol ; 14(2): e1006010, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29451895

RESUMEN

Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.


Asunto(s)
Enzimas/química , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Redes y Vías Metabólicas , Biología de Sistemas , Fenómenos Bioquímicos , Biomasa , Glucosa/química , Cinética , Modelos Biológicos , Modelos Estadísticos , Oxígeno/química , Termodinámica
18.
PLoS Comput Biol ; 14(10): e1006471, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356318

RESUMEN

Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values.


Asunto(s)
Fenómenos Bioquímicos , Modelos Químicos , Oxidación-Reducción , Termodinámica , Modelos Lineales , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(12): 3401-6, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951675

RESUMEN

Turnover numbers, also known as kcat values, are fundamental properties of enzymes. However, kcat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are kcat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate kmax(vivo), the observed maximal catalytic rate of an enzyme inside cells. Comparison with kcat values from Escherichia coli, yields a correlation ofr(2)= 0.62 in log scale (p < 10(-10)), with a root mean square difference of 0.54 (3.5-fold in linear scale), indicating that in vivo and in vitro maximal rates generally concur. By accounting for the degree of saturation of enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between kmax(vivo) and kcat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a high-throughput method for extracting enzyme kinetic constants from omics data.


Asunto(s)
Enzimas/metabolismo , Catálisis
20.
Mol Cell ; 39(5): 809-20, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20832731

RESUMEN

Central carbon metabolism uses a complex series of enzymatic steps to convert sugars into metabolic precursors. These precursors are then used to generate the entire biomass of the cell. Are there simplifying principles that can explain the structure of such metabolic networks? Here we address this question by studying central carbon metabolism in E. coli. We use all known classes of enzymes that work on carbohydrates to generate rules for converting compounds and for generating possible paths between compounds. We find that central carbon metabolism is built as a minimal walk between the 12 precursor metabolites that form the basis for biomass and one precursor essential for the positive net ATP balance in glycolysis: every pair of consecutive precursors in the network is connected by the minimal number of enzymatic steps. Similarly, input sugars are converted into precursors by the shortest possible enzymatic paths. This suggests an optimality principle for the structure of central carbon metabolism. The present approach may be used to study other metabolic networks and to design new minimal pathways.


Asunto(s)
Biomasa , Metabolismo de los Hidratos de Carbono/fisiología , Carbono/metabolismo , Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Adenosina Trifosfato/metabolismo , Escherichia coli/enzimología , Glucólisis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA