Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytochem Anal ; 35(6): 1383-1398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38747201

RESUMEN

INTRODUCTION: Centella is an important genus in the Apiaceae family. It includes Centella asiatica, which has significant edible and medicinal values. However, this species is easily confused due to its similar morphological traits to Hydrocotyle umbellata, hindering its utilization in the consumer and pharmacological industries. OBJECTIVE: The study aims to differentiate these two closely related plant species using reliable methods of confirming the authenticity of natural herbal medicines. METHODS: Our work mainly focuses on the basic morphological characteristics, chemical markers, genetic fingerprints, and their biological responses. RESULTS: The plants can be clearly differentiated using their leaf shapes, stipules, petioles, inflorescences, and fruit structures. Although the phytochemical compositions of the C. asiatica extract were similar to that of H. umbellata which included flavonoids, tannins, and saponins important to the plant's ability to reduce inflammation and promote healing of wounds, the H. umbellata extract showed significantly higher toxicity than that of C. asiatica. High-performance liquid chromatography analysis was used to identify chemical fingerprints. The result revealed that C. asiatica had major triterpene glycoside constituents including asiaticoside, asiatic acid, madecassoside, and madecassic acid, which have a wide range of medicinal values. In contrast, triterpenoid saponins were not identified in H. umbellata. Furthermore, using SCoT1-6 primers was possible to effectively and sufficiently created a dendrogram which successfully identified the closeness of the plants and confirmed the differences between the two plant species. CONCLUSION: Therefore, differentiation can be achieved through the combination of morphometrics, molecular bioactivity, and chemical analysis.


Asunto(s)
Centella , Triterpenos , Centella/química , Cromatografía Líquida de Alta Presión/métodos , Triterpenos/análisis , Triterpenos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
2.
Heliyon ; 10(5): e26962, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463830

RESUMEN

Medicinal plants have long been a source of lead compounds for drug discovery. Among these, the Annonaceae family has gained recognition for its potential to yield novel compounds, particularly those that can be used in the development of drugs targeting chronic diseases like diabetes mellitus (DM). We employed various chromatographic methods to isolate bioactive compounds from the roots, leaves, and twigs of Uvaria dulcis Dunal. We used spectroscopic methods to determine the chemical structures of these compounds. We successfully identified twelve known compounds from various parts of U. dulcis: patchoulenon, polygochalcone, 2'3'-dihydroxy-4',6'-dimethoxydihydrochalcone, 2',3'-dihydroxy-4',6'-dimethoxychalcone, chrysin, techochrysin, 8-hydroxy-5,7-dimethoxyflavanone, pinocembrin, 3-farnesylindole, onysilin, cinchonain la, and cinchonain lb. Interestingly, cinchonain la and cinchonain lb exhibited more potent anti-α-glucosidase activity than acarbose (standard drug), with IC50 values of 11.88 ± 1.41 µg/mL and 15.18 ± 1.19 µg/mL, respectively. Cinchonain la inhibited the DPP-IV enzyme, with IC50 value lower than the standard compound (diprotin A) at 81.78 ± 1.42 µg/mL. While 2',3'-dihydroxy-4',6'-dimethoxychalcone show more potent inhibitory effect than standard drug with IC50 value of 8.62 ± 1.19 µg/mL. Additionally, at a concentration of 10 µg/mL, cinchonain lb and 2',3'-dihydroxy-4',6'-dimethoxychalcone promoted glucose uptake in L6 myotubes cells to the same extent as 100 nM insulin. These findings suggest that cinchonain la, cinchonain lb, and 2',3'-dihydroxy-4',6'-dimethoxychalcone are the U. dulcis-derived bioactive compounds that hold promise as potential structures to use in the development of anti-diabetic drugs.

3.
Dev Comp Immunol ; 151: 105088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923098

RESUMEN

Prophenoloxidase (proPO) activating enzymes, known as PPAEs, are pivotal in activating the proPO system within invertebrate immunity. A cDNA encoding a PPAE derived from the hemocytes of banana shrimp, Fenneropenaeus merguiensis have cloned and analyzed, referred to as FmPPAE1. The open reading frame of FmPPAE1 encompasses 1392 base pairs, encoding a 464-amino acid peptide featuring a presumed 19-amino acid signal peptide. The projected molecular mass and isoelectric point of this protein stand at 50.5 kDa and 7.82, respectively. Structure of FmPPAE1 consists of an N-terminal clip domain and a C-terminal serine proteinase domain, housing a catalytic triad (His272, Asp321, Ser414) and a substrate binding site (Asp408, Ser435, Gly437). Expression of the FmPPAE1 transcript is specific to hemocytes and is heightened upon encountering pathogens like Vibrio parahaemolyticus, Vibrio harveyi, and white spot syndrome virus (WSSV). Using RNA interference to silence the FmPPAE1 gene resulted in reduced hemolymph phenoloxidase (PO) activity and decreased survival rates in shrimp co-injected with pathogenic agents. These findings strongly indicate that FmPPAE1 plays a vital role in regulating the proPO system in shrimp. Furthermore, upon successful production of recombinant FmPPAE1 protein (rFmPPAE1), it became evident that this protein exhibited remarkable abilities in both agglutinating and binding to a wide range of bacterial strains. These interactions were primarily facilitated through the recognition of bacterial lipopolysaccharides (LPS) or peptidoglycans (PGN) found in the cell wall. This agglutination process subsequently triggered melanization, a critical immune response. Furthermore, rFmPPAE1 exhibited the ability to actively impede the growth of pathogenic bacteria harmful to shrimp, including V. harveyi and V. parahaemolyticus. These findings strongly suggest that FmPPAE1 not only plays a pivotal role in activating the proPO system but also possesses inherent antibacterial properties, actively contributing to the suppression of bacterial proliferation. In summary, these results underscore the substantial involvement of FmPPAE1 in activating the proPO system in F. merguiensis and emphasize its crucial role in the shrimp's immune defense against invading pathogens.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Hemocitos , Serina Endopeptidasas/genética , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Proteínas Recombinantes/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Aminoácidos , Virus del Síndrome de la Mancha Blanca 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA