Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Trials ; 18(3): 286-294, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33653146

RESUMEN

BACKGROUND: Vaccines are potent tools to prevent outbreaks of emerging infectious diseases from becoming epidemics and need to be developed at an accelerated pace to have any impact on the course of an ongoing epidemic. The aim of this study was to describe time use in the execution of vaccine trials, to identify steps that could be accelerated to improve preparedness and planning for future emerging infectious diseases vaccine trials. METHODS: We used a mixed-methods approach to map time use and process steps that could be accelerated during vaccine trials. Trials for vaccines against infectious diseases registered in three global trial databases reported in the period 2011-2017 were eligible to join the survey. We invited sponsors to contribute data through a predefined structured questionnaire for clinical trial process metrics. Data were stratified by trial phase, disease type (i.e. emerging infectious diseases or not emerging infectious diseases), sponsor type, and continent. Qualitative interviews were conducted with purposively selected sponsors, and thematic analysis of the interview transcripts was performed. RESULTS: Based on data from 155 vaccine trials including 29,071 subjects, 52% were phase I, 23% phase II, and 25% phase III. We found that the regulatory approval, subject enrollment, study execution, and study close-out accounted for most of the cycle time of the vaccine trial process. Cycle times for the regulatory and ethical approvals, contract agreement, site initiation, and study execution were shorter in trials conducted during outbreaks. Qualitative interviews indicated that early engagement of the regulatory and independent ethical committee authorities in planning the vaccine trials was critical for saving time in trial approval. Furthermore, adapting the trial implementation to the reality of the study sites and active involvement of the local investigators during the planning of the trial and protocol writing were stated to be of paramount importance to successful completion of trials at an accelerated pace. CONCLUSION: The regulatory approval, subject recruitment, study execution, and close-out cycle times accounted for most of the vaccine trial time use and are activities that could be accelerated during a vaccine trial planning and implementation. We encourage tracking of key cycle time metrics and facilitating sharing of knowledge across industry and academia, as this may serve to reduce the time from index case detection to access of a vaccine during emerging infectious diseases epidemics.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedades Transmisibles Emergentes , Epidemias , Vacunas , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Epidemias/prevención & control , Humanos , Proyectos de Investigación , Tiempo
3.
Artículo en Inglés | MEDLINE | ID: mdl-31776599

RESUMEN

Today's world is characterized by increasing population density, human mobility, urbanization, and climate and ecological change. This global dynamic has various effects, including the increased appearance of emerging infectious diseases (EIDs), which pose a growing threat to global health security.Outbreaks of EIDs, like the 2013-2016 Ebola outbreak in West Africa or the current Ebola outbreak in Democratic Republic of the Congo (DRC), have not only put populations in low- and middle-income countries (LMIC) at risk in terms of morbidity and mortality, but they also have had a significant impact on economic growth in affected regions and beyond.The Coalition for Epidemic Preparedness Innovation (CEPI) is an innovative global partnership between public, private, philanthropic, and civil society organizations that was launched as the result of a consensus that a coordinated, international, and intergovernmental plan was needed to develop and deploy new vaccines to prevent future epidemics.CEPI is focusing on supporting candidate vaccines against the World Health Organization (WHO) Blueprint priority pathogens MERS-CoV, Nipah virus, Lassa fever virus, and Rift Valley fever virus, as well as Chikungunya virus, which is on the WHO watch list. The current vaccine portfolio contains a wide variety of technologies, ranging across recombinant viral vectors, nucleic acids, and recombinant proteins. To support and accelerate vaccine development, CEPI will also support science projects related to the development of biological standards and assays, animal models, epidemiological studies, and diagnostics, as well as build capacities for future clinical trials in risk-prone contexts.


Asunto(s)
Enfermedades Transmisibles Emergentes , Epidemias , Vacunas , África Occidental , Animales , Brotes de Enfermedades , Alemania , Humanos
4.
Lancet ; 389(10068): 505-518, 2017 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-28017403

RESUMEN

BACKGROUND: rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. METHODS: We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6-17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9-100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3-100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. INTERPRETATION: The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. FUNDING: WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola/prevención & control , Adolescente , Adulto , Niño , Análisis por Conglomerados , Trazado de Contacto , Ebolavirus , Femenino , Guinea , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/transmisión , Humanos , Masculino , Glicoproteínas de Membrana , Persona de Mediana Edad , Resultado del Tratamiento , Vesiculovirus , Adulto Joven
5.
J Proteome Res ; 16(11): 4045-4059, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28920697

RESUMEN

Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of three Mtb isolates: two lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses, and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interactions, and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb and open a new avenue of research for exploring the role of protein acetylation in Mtb physiology.


Asunto(s)
Acetilación , Mycobacterium tuberculosis/química , Procesamiento Proteico-Postraduccional , Antibacterianos , Proteínas Bacterianas/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Especificidad de la Especie , Virulencia
6.
J Clin Microbiol ; 55(5): 1327-1333, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28202795

RESUMEN

Within 1 week in April 2013, three cases of pulmonary tuberculosis (TB) were reported among students attending training sessions at an educational institution in Oslo, Norway. By the end of October 2013, a total of nine epidemiologically linked cases had been reported. The outbreak encompassed a total of 24 cases from 2009 to 2014, among which all of the 22 Mycobacterium tuberculosis isolates available had identical mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profiles (MtbC15-9 code 10287-189) belonging to the Beijing lineage. Whole-genome sequencing (WGS) of the M. tuberculosis isolates revealed 20 variable nucleotide positions within the cluster, indicating a clonal outbreak. The most likely index case was identified and diagnosed in Norway in 2009 but was born in Asia. WGS analyses verified that all of the cases were indeed part of a single transmission chain. However, even when combining WGS and intensified contact tracing, we were unable to fully reconstruct the TB transmission events.


Asunto(s)
Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/epidemiología , Adolescente , Adulto , Análisis por Conglomerados , Brotes de Enfermedades/estadística & datos numéricos , Humanos , Tipificación Molecular , Noruega/epidemiología , Estudiantes/estadística & datos numéricos , Secuencias Repetidas en Tándem/genética , Tuberculosis Pulmonar/microbiología , Adulto Joven
7.
Pharmacol Res ; 121: 194-201, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28495657

RESUMEN

Meningococcal disease is caused mainly by serogroups A, B, C, Y, W of N. meningitidis. However, numerous cases of meningitis caused by serogroup X N. meningitidis (MenX) have recently been reported in several African countries. Currently, there are no licensed vaccines against this pathogen and most of the MenX cases have been caused by meningococci from clonal complex (c.c) 181. Detergent extracted meningococcal outer membrane vesicle (dOMV) vaccines have previously shown to be safe and effective against epidemics of serogroup B meningococcal disease in all age groups. The aim of this work is therefore to obtain, characterize and evaluate the vaccine potential of dOMVs derived from a MenX strain (OMVx). Three experimental lots of OMVx were prepared by deoxycholate extraction from the MenX strain BF 2/97. Size and morphology of the vesicles was determined by Dynamic Light Scattering and electron microscopy, whereas the antigenic composition was characterized by gel electrophoresis and immunoblotting. OMVx were thereafter adsorbed to aluminium hydroxide (OMVx/AL) and two doses of OMVx were administered s.c. to groups of Balb/c mice three weeks apart. The immunogenicity and functional antibody activities in sera were evaluated by ELISA (anti-OMVx specific IgG responses) and serum bactericidal activity (SBA) assay. The size range of OMVx was shown to be between 90 and 120nm, whereas some of the antigens detected were the outer membrane proteins PorA, OpcA and RmpM. The OMVx/AL elicited high anti-OMVx antibody responses with bactericidal activity and no bactericidal activity was observed in the control group of no immunised mice. The results demonstrate that OMVx are immunogenic and could form part of a future vaccine to prevent the majority of meningococcal disease in the African meningitis belt.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/uso terapéutico , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis/inmunología , África/epidemiología , Animales , Formación de Anticuerpos , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Femenino , Humanos , Inmunización , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/inmunología , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/aislamiento & purificación , Ratones Endogámicos BALB C
8.
Tidsskr Nor Laegeforen ; 142(9)2022 06 14.
Artículo en Inglés, Noruego | MEDLINE | ID: mdl-35699539

RESUMEN

The collection and use of convalescent plasma to treat COVID-19 has taught us important lessons about the organisation, testing and selection of blood donors and patients. This is knowledge that can be used in the next pandemic.


Asunto(s)
Donantes de Sangre , COVID-19 , Anticuerpos Antivirales , COVID-19/terapia , Humanos , Inmunización Pasiva , SARS-CoV-2 , Sueroterapia para COVID-19
9.
J Infect Dis ; 213(6): 930-3, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26563239

RESUMEN

The live attenuated vesicular stomatitis virus-vectored Ebola vaccine rVSV-ZEBOV is currently undergoing clinical trials in West Africa. The vaccine is to be stored at -70°C or less. Since maintaining the cold chain is challenging in rural areas, the rVSV-ZEBOV vaccine's short-term and long-term stability at different temperatures was examined. Different dilutions were tested since the optimal vaccine dosage had not yet been determined at the start of this experiment. The results demonstrate that the original vaccine formulation was stable for 1 week at 4°C and for 24 hours at 25°C. The stability of the vaccine was compromised by both high temperatures and dilution.


Asunto(s)
Vacunas contra el Virus del Ébola/química , Potencia de la Vacuna , Animales , Chlorocebus aethiops , Concentración de Iones de Hidrógeno , Temperatura , Factores de Tiempo , Células Vero
10.
BMC Evol Biol ; 16(1): 146, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27363525

RESUMEN

BACKGROUND: A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). RESULTS: More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. CONCLUSIONS: We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.


Asunto(s)
Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Evolución Biológica , Etiopía , Genoma Bacteriano , Humanos , Mycobacterium tuberculosis/metabolismo , Filogenia , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , Tuberculosis/microbiología
11.
Emerg Infect Dis ; 22(1): 75-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26689450

RESUMEN

Among 139 patients with suspected bacterial meningitis in Ethiopia, 2012-2013, meningococci (19.4%) and pneumococci (12.9%) were the major disease-causing organisms. Meningococcal serogroups detected were A (n = 11), W (n = 7), C (n = 1), and X (n = 1). Affordable, multivalent meningitis vaccines for the African meningitis belt are urgently needed.


Asunto(s)
Meningitis Bacterianas/inmunología , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/aislamiento & purificación , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/aislamiento & purificación , Adolescente , Adulto , Niño , Preescolar , Etiopía , Femenino , Humanos , Masculino , Neisseria meningitidis/inmunología , Streptococcus pneumoniae/inmunología , Adulto Joven
12.
Lancet ; 386(9996): 857-66, 2015 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-26248676

RESUMEN

BACKGROUND: A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS: For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION: The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING: WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Ebolavirus/inmunología , Femenino , Vectores Genéticos , Guinea/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Incidencia , Estimación de Kaplan-Meier , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Vacunación/métodos , Vesiculovirus/metabolismo , Adulto Joven
13.
Proc Natl Acad Sci U S A ; 110(47): 19077-82, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191022

RESUMEN

Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.


Asunto(s)
Brotes de Enfermedades/prevención & control , Glicoconjugados/biosíntesis , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/biosíntesis , Neisseria meningitidis/genética , África del Sur del Sahara/epidemiología , Animales , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Glicoconjugados/inmunología , Humanos , Espectroscopía de Resonancia Magnética , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Ratones , Neisseria meningitidis/metabolismo , Polisacáridos Bacterianos/aislamiento & purificación , Polisacáridos Bacterianos/metabolismo
14.
J Clin Microbiol ; 53(4): 1301-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673798

RESUMEN

Recent genotyping studies of Mycobacterium tuberculosis in Ethiopia have reported the identification of a new phylogenetically distinct M. tuberculosis lineage, lineage 7. We therefore investigated the genetic diversity and association of specific M. tuberculosis lineages with sociodemographic and clinical parameters among pulmonary TB patients in the Amhara Region, Ethiopia. DNA was isolated from M. tuberculosis-positive sputum specimens (n=240) and analyzed by PCR and 24-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) analysis and spoligotyping. Bioinformatic analysis assigned the M. tuberculosis genotypes to global lineages, and associations between patient characteristics and genotype were evaluated using logistic regression analysis. The study revealed a high diversity of modern and premodern M. tuberculosis lineages, among which approximately 25% were not previously reported. Among the M. tuberculosis strains (n=138) assigned to seven subgroups, the largest cluster belonged to the lineage Central Asian (CAS) (n=60; 26.0%), the second largest to lineage 7 (n=36; 15.6%), and the third largest to the lineage Haarlem (n=35; 15.2%). Four sublineages were new in the MIRU-VNTRplus database, designated NW-ETH3, NW-ETH1, NW-ETH2, and NW-ETH4, which included 24 (10.4%), 18 (7.8%), 8 (3.5%), and 5 (2.2%) isolates, respectively. Notably, patient delay in seeking treatment was significantly longer among patients infected with lineage 7 strains (Mann-Whitney test, P<0.008) than in patients infected with CAS strains (adjusted odds ratio [AOR], 4.7; 95% confidence interval [CI], 1.6 to 13.5). Lineage 7 strains also grew more slowly than other M. tuberculosis strains. Cases of Haarlem (OR, 2.8; 95% CI, 1.2 to 6.6) and NW-ETH3 (OR, 2.8; 95% CI, 1.0 to 7.3) infection appeared in defined clusters. Intensified active case finding and contact tracing activities in the study region are needed to expedite diagnosis and treatment of TB.


Asunto(s)
Diagnóstico Tardío , Genotipo , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Adulto , Estudios Transversales , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Etiopía/epidemiología , Femenino , Variación Genética , Humanos , Masculino , Epidemiología Molecular , Tipificación Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Esputo/microbiología , Tuberculosis Pulmonar/epidemiología , Virulencia
15.
Tidsskr Nor Laegeforen ; 135(23-24): 2160-4, 2015 Dec 15.
Artículo en Inglés, Noruego | MEDLINE | ID: mdl-26674036

RESUMEN

BACKGROUND: Tuberculosis is a rare disease in Norway, especially among those who are born here. Contact tracing for cases of pulmonary tuberculosis is essential to find others who are ill or infected, and to prevent further infection. This article describes the investigation of an outbreak in which many of those infected or ill were Norwegian adolescents. MATERIAL AND METHOD: Nine persons directly or indirectly associated with the same educational institution were diagnosed with tuberculosis in 2013. Genetic testing of tuberculosis bacteria linked a further 13 cases of the disease reported in Eastern Norway during the period 2009-2013 to the outbreak. Information from the Norwegian Surveillance System for Communicable Diseases (MSIS) was used to investigate the outbreak, and information was also retrieved on exposure and contact networks. RESULTS: The first patient at the educational institution had long-term symptoms before diagnosis. Contact tracing for this case included 319 persons, of whom eight were ill, 49 infected and 37 received preventive therapy. The extent of contract tracing for the remaining 21 cases varied and included a total of 313 persons, of whom two were found to be ill (included in the 21 cases), 30 were infected and 12 received preventive therapy. INTERPRETATION: Delayed diagnosis led to an unusually large tuberculosis outbreak in a Norwegian context. The extent of contact tracing varied with no obvious relation to the infectiousness of the index patient. The outbreak demonstrates the importance of continued vigilance with regard to tuberculosis as a differential diagnosis, also among patients born in Norway.


Asunto(s)
Trazado de Contacto , Tuberculosis/epidemiología , Adolescente , Control de Enfermedades Transmisibles , Diagnóstico Tardío , Brotes de Enfermedades , Femenino , Humanos , Masculino , Mycobacterium tuberculosis/genética , Noruega/epidemiología , Instituciones Académicas , Tuberculosis/diagnóstico , Tuberculosis/genética , Tuberculosis/transmisión , Adulto Joven
16.
Sci Rep ; 13(1): 18902, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919366

RESUMEN

Throughout the COVID-19 pandemic, several variants of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have evolved, affecting the efficacy of the approved COVID-19 vaccines. To address the need for vaccines that induce strong and persistent cross-reactive neutralizing antibodies and T cell responses, we developed a prophylactic SARS-CoV-2 vaccine candidate based on our easily and rapidly adaptable plasmid DNA vaccine platform. The vaccine candidate, referred to here as VB2129, encodes a protein homodimer consisting of the receptor binding domain (RBD) from lineage B.1.351 (Beta) of SARS-CoV-2, a VoC with a severe immune profile, linked to a targeting unit (human LD78ß/CCL3L1) that binds chemokine receptors on antigen-presenting cells (APCs) and a dimerization unit (derived from the hinge and CH3 exons of human IgG3). Immunogenicity studies in mice demonstrated that the APC-targeted vaccine induced strong antibody responses to both homologous Beta RBD and heterologous RBDs derived from Wuhan, Alpha, Gamma, Delta, and Omicron BA.1 variants, as well as cross-neutralizing antibodies against these VoC. Overall, preclinical data justify the exploration of VB2129 as a potential booster vaccine that induces broader antibody- and T cell-based protection against current and future SARS-CoV-2 VoC.


Asunto(s)
COVID-19 , Vacunas contra el Cáncer , Vacunas de ADN , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , SARS-CoV-2 , Pandemias , COVID-19/prevención & control , Linfocitos T , Células Presentadoras de Antígenos , Anticuerpos ampliamente neutralizantes , ADN , Inmunoglobulina G , Anticuerpos Neutralizantes , Anticuerpos Antivirales
17.
mSphere ; 7(1): e0067421, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080470

RESUMEN

Neisseria meningitidis outer membrane vesicle (OMV) vaccines are safe and provide strain-specific protection against invasive meningococcal disease (IMD) primarily by inducing serum bactericidal antibodies against the outer membrane proteins (OMP). To design broader coverage vaccines, knowledge of the immunogenicity of all the antigens contained in OMVs is needed. In a Phase I clinical trial, an investigational meningococcal OMV vaccine, MenPF1, made from a meningococcus genetically modified to constitutively express the iron-regulated FetA induced bactericidal responses to both the PorA and the FetA antigen present in the OMP. Using peripheral blood mononuclear cells collected from this trial, we analyzed the kinetics of and relationships between IgG, IgA, and IgM B cell responses against recombinant PorA and FetA, including (i) antibody-secreting cells, (ii) memory B cells, and (iii) functional antibody responses (opsonophagocytic and bactericidal activities). Following MenPF1vaccination, PorA-specific IgG secreting cell responses were detected in up to 77% of participants and FetA-specific responses in up to 36%. Memory B cell responses to the vaccine were low or absent and mainly detected in participants who had evidence of preexisting immunity (P = 0.0069). Similarly, FetA-specific antibody titers and bactericidal activity increased in participants with preexisting immunity and is consistent with the idea that immune responses are elicited to minor antigens during asymptomatic Neisseria carriage, which can be boosted by OMV vaccines. IMPORTANCE Neisseria meningitidis outer membrane vesicles (OMV) are a component of the capsular group B meningococcal vaccine 4CMenB (Bexsero) and have been shown to induce 30% efficacy against gonococcal infection. They are composed of multiple antigens and are considered an interesting delivery platform for vaccines against several bacterial diseases. However, the protective antibody response after two or three doses of OMV-based meningococcal vaccines appears short-lived. We explored the B cell response induced to a dominant and a subdominant antigen in a meningococcal OMV vaccine in a clinical trial and showed that immune responses are elicited to minor antigens. However, memory B cell responses to the OMV were low or absent and mainly detected in participants who had evidence of preexisting immunity against the antigens. Failure to induce a strong B cell response may be linked with the low persistence of protective responses.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Humanos , Inmunoglobulina G , Leucocitos Mononucleares , Infecciones Meningocócicas/prevención & control
18.
J Biol Chem ; 285(26): 19874-83, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20421293

RESUMEN

The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for alpha-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core.


Asunto(s)
Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Neisseria meningitidis Serogrupo A/genética , Neisseria meningitidis Serogrupo A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia de Carbohidratos , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida , Cromatografía de Gases y Espectrometría de Masas , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Meningitis Meningocócica/microbiología , Datos de Secuencia Molecular , Estructura Molecular , Monosacáridos/análisis , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neisseria meningitidis Serogrupo A/clasificación , Análisis de Secuencia de ADN , Serotipificación , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
BMJ Glob Health ; 5(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32816810

RESUMEN

Rift valley fever virus (RVFV) is a causative agent of a viral zoonosis that constitutes a major clinical burden in wild and domestic ruminants. The virus causes major outbreaks in livestock (sheep, goats, cattle and camels) and can be transmitted to humans by contaminated animal products or via arthropod vectors. Human-to-human transmission has not been reported to date, but spill-over events from animals have led to outbreaks in humans in Africa and the Arabian Peninsula. Currently, there is no licensed human vaccine against RVFV and the virus is listed as a priority pathogen by the World Health Organisation (WHO) due to the high epidemic potential and the lack of effective countermeasures. Multiple large RVFV outbreaks have been reported since the virus was discovered. During the last two decades, over 4000 cases and ~1000 deaths have been reported. The lack of systematic surveillance to estimate the true burden and incidence of human RVF disease is a challenge for planning future vaccine efficacy evaluation. This creates a need for robust diagnostic methodologies that can be deployed in remote regions to aid case confirmation, assessment of seroprevalence as well as pathogen surveillance required for the different stages of vaccine evaluation. Here, we perform comprehensive landscaping of the available diagnostic solutions for detection of RVFV in humans. Based on the identified gaps in the currently available in-house and commercially available methods, we highlight the specific investment needs for diagnostics that are critical for accelerating the development of effective vaccines against RVFV.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , África/epidemiología , Animales , Bovinos , Humanos , Fiebre del Valle del Rift/diagnóstico , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/prevención & control , Estudios Seroepidemiológicos , Ovinos , Vacunación
20.
BMJ Glob Health ; 4(Suppl 2): e001119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899576

RESUMEN

Lassa fever, caused by arenavirus Lassa virus (LASV), is an acute viral haemorrhagic disease that affects up to an estimated 300 000 individuals and causes up to 5000 deaths per year in West Africa. Currently available LASV diagnostic methods are difficult to operationalise in low-resource health centres and may be less sensitive to detecting all known or emerging LASV strains. To prioritise diagnostic development for LASV, we assessed the diagnostic applications for case detection, clinical management, surveillance, outbreak response, and therapeutic and vaccine development at various healthcare levels. Diagnostic development should prioritise point-of-care and near-patient diagnostics, especially those with the ability to detect all lineages of LASV, as they would allow for rapid detection in resource-limited health facilities closer to the patient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA