Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Intern Med ; 294(5): 563-581, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37766515

RESUMEN

The long-term effects of COVID-19 on cognitive function have become an area of increasing concern. This paper provides an overview of characteristics, risk factors, possible mechanisms, and management strategies for cognitive dysfunction in post-COVID-19 condition (PCC). Prolonged cognitive dysfunction is one of the most common impairments in PCC, affecting between 17% and 28% of the individuals more than 12 weeks after the infection and persisting in some cases for several years. Cognitive dysfunctions can be manifested as a wide range of symptoms including memory impairment, attention deficit, executive dysfunction, and reduced processing speed. Risk factors for developing PCC, with or without cognitive impairments, include advanced age, preexisting medical conditions, and the severity of acute illness. The underlying mechanisms remain unclear, but proposed contributors include neuroinflammation, hypoxia, vascular damage, and latent virus reactivation not excluding the possibility of direct viral invasion of the central nervous system, illustrating complex viral pathology. As the individual variation of the cognitive impairments is large, a neuropsychological examination and a person-centered multidimensional approach are required. According to the World Health Organization, limited evidence on COVID-19-related cognitive impairments necessitates implementing rehabilitation interventions from established practices of similar conditions. Psychoeducation and compensatory skills training are recommended. Assistive products and environmental modifications adapted to individual needs might be helpful. In specific attention- and working memory dysfunctions, cognitive training-carefully monitored for intensity-might be effective for people who do not suffer from post-exertional malaise. Further research is crucial for evidence-based interventions specific to COVID-19-related cognitive impairments.

2.
J Intern Med ; 293(5): 600-614, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36815689

RESUMEN

BACKGROUND: Severe COVID-19 increases the risk for long-term respiratory impairment, but data after mild COVID-19 are scarce. Our aims were to determine risk factors for reduced respiratory function 3-6 months after COVID-19 infection and to investigate if reduced respiratory function would relate to impairment of exercise performance and breathlessness. METHODS: Patients with COVID-19 were enrolled at the University Hospitals of Umeå and Örebro, and Karlstad Central Hospital, Sweden. Disease severity was defined as mild (nonhospitalized), moderate (hospitalized with or without oxygen treatment), and severe (intensive care). Spirometry, including diffusion capacity (DLCO ), was performed 3-6 months after hospital discharge or study enrollment (for nonhospitalized patients). Breathlessness (defined as ≥1 according to the modified Medical Research Council scale) and functional exercise capacity (1-min sit-to-stand test; 1-MSTST) were assessed. RESULTS: Between April 2020 and May 2021, 337 patients were enrolled in the study. Forced vital capacity and DLCO were significantly lower in patients with severe COVID-19. Among hospitalized patients, 20% had reduced DLCO , versus 4% in nonhospitalized. Breathlessness was found in 40.6% of the participants and was associated with impaired DLCO . A pathological desaturation or heart rate response was observed in 17% of participants during the 1-MSTST. However, this response was not associated with reduced DLCO . CONCLUSION: Reduced DLCO was the major respiratory impairment 3-6 months following COVID-19, with hospitalization as the most important risk factor. The lack of association between impaired DLCO and pathological physiological responses to exertion suggests that these physiological responses are not primarily related to decreased lung function.


Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , Estudios Prospectivos , Disnea/etiología , Espirometría , Factores de Riesgo , Pulmón
3.
Euro Surveill ; 28(13)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36995373

RESUMEN

BackgroundThe current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture for testing is usually performed by trained staff at healthcare centres. Long travel distances to healthcare centres in rural regions may introduce a bias of testing towards relatively large communities with closer access. Rural regions are therefore often not represented in population-based data.AimThe aim of this retrospective cohort study was to develop and implement a strategy for at-home testing in a rural region of Sweden during spring 2021, and to evaluate its role to provide equal health care for its inhabitants.MethodsWe developed a sensitive method to measure antibodies to the S-protein of SARS-CoV-2 and optimised this assay for clinical use together with a strategy of at-home capillary blood sampling.ResultsWe demonstrated that our ELISA gave comparable results after analysis of capillary blood or serum from SARS-CoV-2-experienced individuals. We demonstrated stability of the assay under conditions that reflected temperature and humidity during winter or summer. By assessment of capillary blood samples from 4,122 individuals, we could show both feasibility of the strategy and that implementation shifted the geographical spread of testing in favour of rural areas.ConclusionImplementation of at-home sampling enabled citizens living in remote rural areas access to centralised and sensitive laboratory antibody tests. The strategy for testing used here could therefore enable disease control authorities to get rapid access to information concerning immunity to infectious diseases, even across vast geographical distance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios Retrospectivos , Suecia/epidemiología , Prueba de COVID-19 , Anticuerpos Antivirales
4.
Euro Surveill ; 28(42)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855907

RESUMEN

BackgroundEuropean-specific policies for tuberculosis (TB) elimination require identification of key populations that benefit from TB screening.AimWe aimed to identify groups of foreign-born individuals residing in European countries that benefit most from targeted TB prevention screening.MethodsThe Tuberculosis Network European Trials group collected, by cross-sectional survey, numbers of foreign-born TB patients residing in European Union (EU) countries, Iceland, Norway, Switzerland and the United Kingdom (UK) in 2020 from the 10 highest ranked countries of origin in terms of TB cases in each country of residence. Tuberculosis incidence rates (IRs) in countries of residence were compared with countries of origin.ResultsData on 9,116 foreign-born TB patients in 30 countries of residence were collected. Main countries of origin were Eritrea, India, Pakistan, Morocco, Romania and Somalia. Tuberculosis IRs were highest in patients of Eritrean and Somali origin in Greece and Malta (both > 1,000/100,000) and lowest among Ukrainian patients in Poland (3.6/100,000). They were mainly lower in countries of residence than countries of origin. However, IRs among Eritreans and Somalis in Greece and Malta were five times higher than in Eritrea and Somalia. Similarly, IRs among Eritreans in Germany, the Netherlands and the UK were four times higher than in Eritrea.ConclusionsCountry of origin TB IR is an insufficient indicator when targeting foreign-born populations for active case finding or TB prevention policies in the countries covered here. Elimination strategies should be informed by regularly collected country-specific data to address rapidly changing epidemiology and associated risks.


Asunto(s)
Tuberculosis , Humanos , Incidencia , Estudios Transversales , Somalia , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Europa (Continente)/epidemiología
6.
Faraday Discuss ; 218(0): 268-283, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31120463

RESUMEN

Modern profiling technologies enable us to obtain large amounts of data which can be used later for a comprehensive understanding of the studied system. Proper evaluation of such data is challenging, and cannot be carried out by bare analysis of separate data sets. Integrated approaches are necessary, because only data integration allows us to find correlation trends common for all studied data sets and reveal hidden structures not known a priori. This improves the understanding and interpretation of complex systems. Joint and Unique MultiBlock Analysis (JUMBA) is an analysis method based on the OnPLS-algorithm that decomposes a set of matrices into joint parts containing variations shared with other connected matrices and variations that are unique for each single matrix. Mapping unique variations is important from a data integration perspective, since it certainly cannot be expected that all variation co-varies. In this work we used JUMBA for the integrated analysis of lipidomic, metabolomic and oxylipins data sets obtained from profiling of plasma samples from children infected with P. falciparum malaria. P. falciparum is one of the primary contributors to childhood mortality and obstetric complications in the developing world, which makes the development of new diagnostic and prognostic tools, as well as a better understanding of the disease, of utmost importance. In the presented work, JUMBA made it possible to detect already known trends related to the disease progression, but also to discover new structures in the data connected to food intake and personal differences in metabolism. By separating the variation in each data set into joint and unique, JUMBA reduced the complexity of the analysis and facilitated the detection of samples and variables corresponding to specific structures across multiple data sets, and by doing this enabled fast interpretation of the studied system. All of this makes JUMBA a perfect choice for multiblock analysis of systems biology data.


Asunto(s)
Malaria/sangre , Algoritmos , Niño , Humanos , Malaria/diagnóstico , Malaria/parasitología , Plasmodium falciparum/aislamiento & purificación
7.
Malar J ; 17(1): 426, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442134

RESUMEN

BACKGROUND: The intimate interaction between the pathophysiology of the human host and the biology of the Plasmodium falciparum parasite results in a wide spectrum of disease outcomes in malaria. Development of severe disease is associated with a progressively augmented imbalance in pro- and anti-inflammatory responses to high parasite loads and sequestration of parasitized erythrocytes. Although these phenomena collectively constitute common denominators for the wide variety of discrete severe malaria manifestations, the mechanistic rationales behind discrepancies in outcome are poorly understood. Exploration of the human pathophysiological response by variations in protein profiles in plasma presents an excellent opportunity to increase the understanding. This is ultimately required for better prediction, prevention and treatment of malaria, which is essential for ongoing elimination and eradication efforts. RESULTS: An affinity proteomics approach was used to analyse 541 paediatric plasma samples collected from community controls and patients with mild or severe malaria in Rwanda. Protein profiles were generated with an antibody-based suspension bead array containing 255 antibodies targetting 115 human proteins. Here, 57 proteins were identified with significantly altered levels (adjusted p-values < 0.001) in patients with malaria compared to controls. From these, the 27 most significant proteins (adjusted p-values < 10-14) were selected for a stringent analysis approach. Here, 24 proteins showed elevated levels in malaria patients and included proteins involved in acute inflammatory response as well as cell adhesion. The remaining three proteins, also implicated in immune regulation and cellular adhesivity, displayed lower abundance in malaria patients. In addition, 37 proteins (adjusted p-values < 0.05) were identified with increased levels in patients with severe compared to mild malaria. This set includes, proteins involved in tissue remodelling and erythrocyte membrane proteins. Collectively, this approach has been successfully used to identify proteins both with known and unknown association with different stages of malaria. CONCLUSION: In this study, a high-throughput affinity proteomics approach was used to find protein profiles in plasma linked to P. falciparum infection and malaria disease progression. The proteins presented herein are mainly involved in inflammatory response, cellular adhesion and as constituents of erythrocyte membrane. These findings have a great potential to provide increased conceptual understanding of host-parasite interaction and malaria pathogenesis.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Interacciones Huésped-Parásitos , Malaria Falciparum/fisiopatología , Malaria/fisiopatología , Plasmodium falciparum/fisiología , Adhesión Celular , Niño , Preescolar , Eritrocitos/parasitología , Femenino , Humanos , Lactante , Inflamación/parasitología , Inflamación/fisiopatología , Malaria/parasitología , Malaria Falciparum/parasitología , Masculino , Rwanda
8.
Malar J ; 16(1): 358, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886714

RESUMEN

BACKGROUND: Oxylipins and endocannabinoids are low molecular weight bioactive lipids that are crucial for initiation and resolution of inflammation during microbial infections. Metabolic complications in malaria are recognized contributors to severe and fatal malaria, but the impact of malaria infection on the production of small lipid derived signalling molecules is unknown. Knowledge of immunoregulatory patterns of these molecules in malaria is of great value for better understanding of the disease and improvement of treatment regimes, since the action of these classes of molecules is directly connected to the inflammatory response of the organism. METHODS: Detection of oxylipins and endocannabinoids from plasma samples from forty children with uncomplicated and severe malaria as well as twenty controls was done after solid phase extraction followed by chromatography mass spectrometry analysis. The stable isotope dilution method was used for compound quantification. Data analysis was done with multivariate (principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA®) and univariate approaches (receiver operating characteristic (ROC) curves, t tests, correlation analysis). RESULTS: Forty different oxylipin and thirteen endocannabinoid metabolites were detected in the studied samples, with one oxylipin (thromboxane B2, TXB2) in significantly lower levels and four endocannabinoids (OEA, PEA, DEA and EPEA) at significantly higher levels in infected individuals as compared to controls according to t test analysis with Bonferroni correction. Three oxylipins (13-HODE, 9-HODE and 13-oxo-ODE) were higher in severe compared to uncomplicated malaria cases according to the results from multivariate analysis. Observed changes in oxylipin levels can be connected to activation of cytochrome P450 (CYP) and 5-lipoxygenase (5-LOX) metabolic pathways in malaria infected individuals compared to controls, and related to increased levels of all linoleic acid oxylipins in severe patients compared to uncomplicated ones. The endocannabinoids were extremely responsive to malaria infection with majority of this class of molecules found at higher levels in infected individuals compared to controls. CONCLUSIONS: It was possible to detect oxylipin and endocannabinoid molecules that can be potential biomarkers for differentiation between malaria infected individuals and controls and between different classes of malaria. Metabolic pathways that could be targeted towards an adjunctive therapy in the treatment of malaria were also pinpointed.


Asunto(s)
Biomarcadores/sangre , Endocannabinoides/sangre , Endocannabinoides/química , Malaria Falciparum/diagnóstico , Oxilipinas/sangre , Oxilipinas/química , Araquidonato 5-Lipooxigenasa/metabolismo , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Lactante , Ácidos Linoleicos , Ácidos Linoleicos Conjugados , Ácidos Linolénicos , Malaria/sangre , Malaria/diagnóstico , Malaria Falciparum/sangre , Masculino , Análisis Multivariante , Plasmodium falciparum/patogenicidad , Rwanda
9.
Microbiol Spectr ; 12(1): e0278123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38019016

RESUMEN

IMPORTANCE: Unveiling gene co-expression networks in bacterial pathogens has the potential for gaining insights into their adaptive strategies within the host environment. Here, we developed Co-PATHOgenex, an interactive and user-friendly web application that enables users to construct networks from gene co-expressions using custom-defined thresholds (https://avicanlab.shinyapps.io/copathogenex/). The incorporated search functions and visualizations within the tool simplify the usage and facilitate the interpretation of the analysis output. Co-PATHOgenex also includes stress stimulons for various bacterial species, which can help identify gene products not previously associated with a particular stress condition.


Asunto(s)
Proteínas , Programas Informáticos , Redes Reguladoras de Genes , Bacterias/genética , ARN
10.
Brain Behav ; 14(6): e3574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841730

RESUMEN

BACKGROUND: Olfactory dysfunction together with neurological and cognitive symptoms are common after COVID-19. We aimed to study whether performance on olfactory and neuropsychological tests following infection predict post-COVID condition (PCC), persisting symptoms, and reduced health-related quality of life. METHODS: Both hospitalized (N = 10) and non-hospitalized individuals (N = 56) were enrolled in this prospective cohort study. Participants were evaluated 1-3 months after infection with an olfactory threshold test and neuropsychological tests, which was used as predictors of PCC. A questionnaire outlining persisting symptoms and the validated instrument EuroQol five-dimension five-level for health-related quality of life assessment were used as outcome data 1 year after infection (N = 59). Principal component analysis was used to identify relevant predictors for PCC at 1 year. RESULTS: Objectively assessed olfactory dysfunction at 1-3 months post infection, but not subjective olfactory symptoms, predicted post-COVID condition with reduced health-related quality of life (PCC+) at 1 year. The PCC+ group scored more often below the cut off for mild cognitive impairment on the Montreal Cognitive Assessment (61.5% vs. 21.7%) and higher on the Multidimensional Fatigue Inventory-20, compared to the group without PCC+. CONCLUSION: Our results indicate that objectively assessed, olfactory dysfunction is a predictor for PCC+. These findings underscore the importance of objective olfactory testing. We propose that olfactory screening in the early post-acute phase of COVID-19 infection might identify individuals that are at higher risk of developing long-term health sequalae.


Asunto(s)
COVID-19 , Pruebas Neuropsicológicas , Trastornos del Olfato , Calidad de Vida , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico , Masculino , Femenino , Trastornos del Olfato/etiología , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/fisiopatología , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Estudios de Seguimiento , Adulto , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
11.
Int J Infect Dis ; 144: 107046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615825

RESUMEN

OBJECTIVES: To investigate the effectiveness of intravenous immunoglobulin (IVIG) as treatment for COVID-19 in immunocompromised patients. METHODS: This retrospective study investigated outcomes for immunocompromised, vaccine non-responsive, patients that between September 2022 and April 2023 received IVIG as treatment for COVID-19 in the region of Västerbotten, Sweden. We analyzed clinical data, viral load, and anti-SARS-CoV-2 IgG binding and neutralization levels of patient serum samples and IVIG production batches. Primary and secondary outcomes were clinical cure and viral clearance, respectively. RESULTS: Sixteen patients were analyzed. After a median COVID-19 duration of 4 weeks, a median 60 g IVIG infusion increased SARS-CoV-2 binding and neutralizing antibody levels, with broad in vitro activity against tested variants. The treatment resulted in abrogation of viremia in all patients and general improvement in 15 survivors that all met the primary endpoint. Thirteen patients met the secondary endpoint at follow-up after a median of four months. Two subjects with persistent SARS-CoV-2 carriage relapsed but were successfully retreated with IVIG. CONCLUSIONS: Antibodies in IVIG efficiently neutralized several SARS-CoV-2 variants. Treatment with IVIG was associated with clinical cure and viral clearance in immunocompromised patients. Our data suggests that IVIG could be a novel treatment alternative for COVID-19 for this patient category.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Huésped Inmunocomprometido , Inmunoglobulinas Intravenosas , SARS-CoV-2 , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Inmunoglobulinas Intravenosas/administración & dosificación , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/terapia , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto , Carga Viral , Tratamiento Farmacológico de COVID-19 , Resultado del Tratamiento , Suecia , Anciano de 80 o más Años , Inmunoglobulina G/sangre
12.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716734

RESUMEN

mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Citocinas , Inmunidad Innata , SARS-CoV-2 , Vacunación , Humanos , Inmunidad Innata/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adulto , Masculino , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunación/métodos , Citocinas/inmunología , Vacunas de ARNm/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Adulto Joven , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación
13.
J Bacteriol ; 195(18): 4221-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23852872

RESUMEN

Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.


Asunto(s)
Proteínas Bacterianas/genética , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/genética , Hidrazinas/farmacología , Mutación , Protoporfirinógeno-Oxidasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Chlamydia trachomatis/enzimología , Chlamydia trachomatis/patogenicidad , Farmacorresistencia Bacteriana , Células HeLa , Hemo/metabolismo , Humanos , Hierro/metabolismo , Hierro/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/metabolismo
14.
Front Immunol ; 14: 1219560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575257

RESUMEN

Peripheral B cell depletion via anti-CD20 treatment is a highly effective disease-modifying treatment for reducing new relapses in multiple sclerosis (MS) patients. A drawback of rituximab (RTX) and other anti-CD20 antibodies is a poor immune response to vaccination. While this can be mitigated by treatment interruption of at least six months prior to vaccination, the timing to resume treatment while maintaining subsequent vaccine responses remains undetermined. Here, we characterized SARS-CoV-2 S-directed antibody and B cell responses throughout three BNT162b2 mRNA vaccine doses in RTX-treated MS patients, with the first two doses given during treatment interruption. We examined B-cell mediated immune responses in blood samples from patients with RTX-treated MS throughout three BNT162b2 vaccine doses, compared to an age- and sex-matched healthy control group. The first vaccine dose was given 1.3 years (median) after the last RTX infusion, the second dose one month after the first, and the third dose four weeks after treatment re-initiation. We analyzed SARS-CoV-2 S-directed antibody levels using enzyme-linked immunosorbent assay (ELISA), and the neutralization capacity of patient serum against SARS-CoV-2 S-pseudotyped lentivirus using luciferase reporter assay. In addition, we assessed switched memory (CD19+CD20+CD27+IgD-), unswitched memory (CD19+CD20+CD27+IgD+), naïve (CD19+CD20+CD27-IgD+), and double negative (DN, CD19+CD20+CD27-IgD-) B cell frequencies, as well as their SARS-CoV-2 S-specific (CoV+) and Decay Accelerating Factor-negative (DAF-) subpopulations, using flow cytometry. After two vaccine doses, S-binding antibody levels and neutralization capacity in SARS-CoV-2-naïve MS patients were comparable to vaccinated healthy controls, albeit with greater variation. Higher antibody response levels and CoV+-DN B cell frequencies after the second vaccine dose were predictive of a boost effect after the third dose, even after re-initiation of rituximab treatment. MS patients also exhibited lower frequencies of DAF- memory B cells, a suggested proxy for germinal centre activity, than control individuals. S-binding antibody levels in RTX-treated MS patients after two vaccine doses could help determine which individuals would need to move up their next vaccine booster dose or postpone their next RTX infusion. Our findings also offer first indications on the potential importance of antigenic stimulation of DN B cells and long-term impairment of germinal centre activity in rituximab-treated MS patients.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Humanos , Vacuna BNT162 , Rituximab/uso terapéutico , SARS-CoV-2 , Esclerosis Múltiple/tratamiento farmacológico , COVID-19/prevención & control , Vacunación , Anticuerpos , Inmunidad , ARN Mensajero
15.
Front Public Health ; 11: 1104267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817925

RESUMEN

Background: The long-term sequelae after COVID-19 constitute a challenge to public health and increased knowledge is needed. We investigated the prevalence of self-reported persistent symptoms and reduced health-related quality of life (HRQoL) in relation to functional exercise capacity, 6 months after infection, and explored risk factors for COVID-19 sequalae. Methods: This was a prospective, multicenter, cohort study including 434 patients. At 6 months, physical exercise capacity was assessed by a 1-minute sit-to-stand test (1MSTST) and persistent symptoms were reported and HRQoL was evaluated through the EuroQol 5-level 5-dimension (EQ-5D-5L) questionnaire. Patients with both persistent symptoms and reduced HRQoL were classified into a new definition of post-acute COVID syndrome, PACS+. Risk factors for developing persistent symptoms, reduced HRQoL and PACS+ were identified by multivariable Poisson regression. Results: Persistent symptoms were experienced by 79% of hospitalized, and 59% of non-hospitalized patients at 6 months. Hospitalized patients had a higher prevalence of self-assessed reduced overall health (28 vs. 12%) and PACS+ (31 vs. 11%). PACS+ was associated with reduced exercise capacity but not with abnormal pulse/desaturation during 1MSTST. Hospitalization was the most important independent risk factor for developing persistent symptoms, reduced overall health and PACS+. Conclusion: Persistent symptoms and reduced HRQoL are common among COVID-19 survivors, but abnormal pulse and peripheral saturation during exercise could not distinguish patients with PACS+. Patients with severe infection requiring hospitalization were more likely to develop PACS+, hence these patients should be prioritized for clinical follow-up after COVID-19.


Asunto(s)
COVID-19 , Humanos , Estudios de Cohortes , Síndrome Post Agudo de COVID-19 , Prevalencia , Estudios Prospectivos , Calidad de Vida , Autoinforme
16.
Lancet Reg Health Eur ; : 100646, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363799

RESUMEN

Background: To inform future preventive measures including repeated vaccinations, we have searched for a clinically useful immune correlate of protection against fatal COVID-19 among nursing homes residents. Methods: We performed repeated capillary blood sampling with analysis of S-binding IgG in an open cohort of nursing home residents in Sweden. We analyzed immunological and registry data from 16 September 2021 to 31 August 2022 with follow-up of deaths to 30 September 2022. The study period included implementation of the 3rd and 4th mRNA monovalent vaccine doses and Omicron virus waves. Findings: A total of 3012 nursing home residents with median age 86 were enrolled. The 3rd mRNA dose elicited a 99-fold relative increase of S-binding IgG in blood and corresponding increase of neutralizing antibodies. The 4th mRNA vaccine dose boosted levels 3.8-fold. Half-life of S-binding IgG was 72 days. A total 528 residents acquired their first SARS-CoV-2 infection after the 3rd or the 4th vaccine dose and the associated 30-day mortality was 9.1%. We found no indication that levels of vaccine-induced antibodies protected against infection with Omicron VOCs. In contrast, the risk of death was inversely correlated to levels of S-directed IgG below the 20th percentile. The death risk plateaued at population average above the lower 35th percentile of S-binding IgG. Interpretation: In the absence of neutralizing antibodies that protect from infection, quantification of S-binding IgG post vaccination may be useful to identify the most vulnerable for fatal COVID-19 among the oldest and frailest. This information is of importance for future strategies to protect vulnerable populations against neutralization resistant variants of concern. Funding: Swedish Research Council, SciLifeLab via Knut and Alice Wallenberg Foundation, VINNOVA. Swedish Healthcare Regions, and Erling Persson Foundation.

17.
Sci Immunol ; 7(73): eabq3511, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35549299

RESUMEN

Understanding immune responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses after Omicron/BA.1 infection in messenger RNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells. BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit, which is highly conserved across SARS-CoV-2 variants of concern (VOCs), and toward the antigenically variable receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 VOCs. Together, these findings provide insights into the role of preexisting immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.


Asunto(s)
Linfocitos B , COVID-19 , Memoria Inmunológica , Anticuerpos Antivirales , Linfocitos B/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas , Humanos , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
18.
Science ; 375(6584): 1041-1047, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143256

RESUMEN

Heterologous prime-boost immunization strategies have the potential to augment COVID-19 vaccine efficacy. We longitudinally profiled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-specific serological and memory B cell (MBC) responses in individuals who received either homologous (ChAdOx1:ChAdOx1) or heterologous (ChAdOx1:mRNA-1273) prime-boost vaccination. Heterologous messenger RNA (mRNA) booster immunization induced higher serum neutralizing antibody and MBC responses against SARS-CoV-2 variants of concern (VOCs) compared with that of homologous ChAdOx1 boosting. Specificity mapping of circulating B cells revealed that mRNA-1273 boost immunofocused ChAdOx1-primed responses onto epitopes expressed on prefusion-stabilized S. Monoclonal antibodies isolated from mRNA-1273-boosted participants displayed overall higher binding affinities and increased breadth of reactivity against VOCs relative to those isolated from ChAdOx1-boosted individuals. Overall, the results provide molecular insight into the enhanced quality of the B cell response induced after heterologous mRNA booster vaccination.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , ChAdOx1 nCoV-19/inmunología , Células B de Memoria/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Especificidad de Anticuerpos , ChAdOx1 nCoV-19/administración & dosificación , Femenino , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Inmunogenicidad Vacunal , Masculino , Persona de Mediana Edad , Conformación Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química
19.
Front Immunol ; 13: 945603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967397

RESUMEN

Uncontrolled release of damage-associated molecular patterns (DAMPs) is suggested to be a major trigger for the dysregulated host immune response that leads to severe COVID-19. Cold-inducible RNA-binding protein (CIRP), is a newly identified DAMP that aggravates inflammation and tissue injury, and induces respiratory failure in sepsis. Whether CIRP contributes to the pathogenesis of respiratory failure in COVID-19 has not yet been explored. Aim: To investigate if the concentration of extracellular CIRP (eCIRP) in serum associates with respiratory failure and lung involvement by chest computed tomography (CT) in COVID-19. Methods: Herein we report a prospective observational study of patients with COVID-19 included at two University Hospitals in Sweden between April 2020 and May 2021. Serum from hospitalized patients in Örebro (N=97) were used to assess the association between eCIRP and the level of respiratory support and its correlation with pulmonary involvement on chest CT and inflammatory biomarkers. A cohort of hospitalized and non-hospitalized patients from Umeå (N=78) was used as an external validation cohort. The severity of disease was defined according to the highest degree of respiratory support; mild disease (no oxygen), non-severe hypoxemia (conventional oxygen or high-flow nasal oxygen, HFNO <50% FiO2), and severe hypoxemia (HFNO ≥50% FiO2, mechanical ventilation). Unadjusted and adjusted linear regression was used to evaluate peak eCIRP day 0-4 in respect to severity, age, sex, Charlson comorbidity score, symptom duration, and BMI. Results: Peak eCIRP concentrations were higher in patients with severe hypoxemia and were independently associated with the degree of respiratory support in both cohorts (Örebro; p=0.01, Umeå; p<0.01). The degree of pulmonary involvement measured by CT correlated with eCIRP, rs=0.30, p<0.01 (n=97). Conclusion: High serum levels of eCIRP are associated with acute respiratory failure in COVID-19. Experimental studies are needed to determine if treatments targeting eCIRP reduces the risk of acute respiratory failure in COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Alarminas , Humanos , Hipoxia/complicaciones , Oxígeno , Proteínas de Unión al ARN , Insuficiencia Respiratoria/etiología
20.
medRxiv ; 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32577692

RESUMEN

The current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture is usually performed by trained staff at health care centers. Long travel distances may introduce a bias of testing towards relatively large communities with close access to health care centers. Rural regions may thus be overlooked. Here, we demonstrate a sensitive method to measure antibodies to the S-protein of SARS-CoV-2. We adapted and optimized this assay for clinical use together with capillary blood sampling to meet the geographical challenges of serosurveillance. Finally, we tested remote at-home capillary blood sampling together with centralized assessment of S-specific IgG in a rural region of northern Scandinavia that encompasses 55,185 sq kilometers. We conclude that serological assessment from capillary blood sampling gives comparable results as analysis of venous blood. Importantly, at-home sampling enabled citizens living in remote rural areas access to centralized and sensitive laboratory antibody tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA