Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biol Chem ; 295(28): 9513-9530, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32424044

RESUMEN

Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(ß1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.


Asunto(s)
Pollos , Infecciones por Clostridium , Clostridium perfringens , Lipopolisacáridos , Enfermedades de las Aves de Corral , Ácidos Teicoicos , Animales , Pollos/inmunología , Pollos/microbiología , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/prevención & control , Clostridium perfringens/química , Clostridium perfringens/inmunología , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Ácidos Teicoicos/química , Ácidos Teicoicos/inmunología , Ácidos Teicoicos/farmacología
2.
Glycobiology ; 30(2): 105-119, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31588498

RESUMEN

Campylobacter jejuni is a prevalent gastrointestinal pathogen associated with increasing rates of antimicrobial resistance development. It was also the first bacterium demonstrated to possess a general N-linked protein glycosylation pathway capable of modifying > 80 different proteins, including the primary Campylobacter multidrug efflux pump, CmeABC. Here we demonstrate that N-glycosylation is necessary for the function of the efflux pump and may, in part, explain the evolutionary pressure to maintain this protein modification system. Mutants of cmeA in two common wildtype (WT) strains are highly susceptible to erythromycin (EM), ciprofloxacin and bile salts when compared to the isogenic parental strains. Complementation of the cmeA mutants with the native cmeA allele restores the WT phenotype, whereas expression of a cmeA allele with point mutations in both N-glycosylation sites is comparable to the cmeA mutants. Moreover, loss of CmeA glycosylation leads to reduced chicken colonization levels similar to the cmeA knock-out strain, while complementation fully restores colonization. Reconstitution of C. jejuni CmeABC into Escherichia coli together with the C. jejuni N-glycosylation pathway increases the EM minimum inhibitory concentration and decreases ethidium bromide accumulation when compared to cells lacking the pathway. Molecular dynamics simulations reveal that the protein structures of the glycosylated and non-glycosylated CmeA models do not vary from one another, and in vitro studies show no change in CmeA multimerization or peptidoglycan association. Therefore, we conclude that N-glycosylation has a broader influence on CmeABC function most likely playing a role in complex stability.


Asunto(s)
Proteínas Bacterianas , Campylobacter jejuni , Proteínas de Transporte de Membrana , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Campylobacter/genética , Infecciones por Campylobacter/metabolismo , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Pollos , Glicosilación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/microbiología
3.
Microbiology (Reading) ; 164(6): 896-907, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29856309

RESUMEN

Phase variation (PV), involving stochastic switches in gene expression, is exploited by the human pathogen Campylobacter jejuni to adapt to different environmental and host niches. Phase-variable genes of C. jejuni modulate expression of multiple surface determinants, and hence may influence host colonization. Population bottlenecks can rapidly remove the diversity generated by PV, and strict single-cell bottlenecks can lead to propagation of PV states with highly divergent phenotypes. Using a combination of high-throughput fragment size analysis and comparison with in vivo and in silico bottleneck models, we have characterized a narrow population bottleneck during the experimental colonization of broiler chickens with C. jejuni strain 81-176. We identified high levels of variation in five PV genes in the inoculum, and subsequently, massively decreased population diversity following colonization. Each bird contained a dominant five-gene phasotype that was present in the inoculum indicative of random sorting through a narrow, non-selective bottleneck during colonization. These results are evidence of the potential for confounding effects of PV on in vivo studies of Campylobacter colonization factors and poultry vaccine studies. Our results are also an argument for population bottlenecks as mediators of stochastic variability in the propensity to survive through the food chain and cause clinical human disease.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/genética , Variación Genética , Enfermedades de las Aves de Corral/microbiología , Adaptación Fisiológica , Animales , Vacunas Bacterianas/administración & dosificación , Variación Biológica Poblacional , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/inmunología , Pollos , Expresión Génica , Frecuencia de los Genes , Genes Bacterianos/genética , Genoma Bacteriano/genética , Interacciones Huésped-Patógeno
4.
Glycobiology ; 27(10): 978-989, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922740

RESUMEN

In Campylobacter jejuni, the PglB oligosaccharyltransferase catalyzes the transfer of a heptasaccharide from a lipid donor to asparagine within the D/E-X1-N-X2-S/T sequon (X1,2 ≠ P) or releases this heptasaccharide as free oligosaccharides (fOS). Using available crystal structures and sequence alignments, we identified a DGGK motif near the active site of PglB that is conserved among all Campylobacter species. We demonstrate that amino acid substitutions in the aspartate and lysine residues result in loss of protein glycosylation in the heterologous Escherichia coli system. Similarly, complementation of a C. jejuni pglB knock-out strain with mutated pglB alleles results in reduced levels of N-linked glycoproteins and fOS in the native host. Analysis of the PglB crystal structures from Campylobacter lari and the soluble C-terminal domain from C. jejuni suggests a particularly important structural role for the aspartate residue and the two following glycine residues, as well as a more subtle, less defined role for the lysine residue. Limited proteolysis experiments indicate that conformational changes of wildtype PglB that are induced by the binding of the lipid-linked oligosaccharide are altered by changes in the DGGK motif. Related to these findings, certain Campylobacter species possess two PglB orthologues and we demonstrate that only the orthologue containing the DGGK motif is active. Combining the knowledge gained from the PglB structures and mutagenesis studies, we propose a function for the DGGK motif in affecting the binding of the undecaprenyl-pyrophosphate glycan donor substrate that subsequently influences N-glycan and fOS production.


Asunto(s)
Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , Secuencia Conservada , Glicosiltransferasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Glicosiltransferasas/metabolismo , Lipopolisacáridos/química , Simulación del Acoplamiento Molecular , Mutación , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica
5.
Mol Microbiol ; 101(4): 575-89, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145048

RESUMEN

Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Campylobacter jejuni/fisiología , Fucosa/metabolismo , Campylobacter coli/genética , Campylobacter coli/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Metabolismo de los Hidratos de Carbono , Quimiotaxis/fisiología , Fucosa/genética , Genotipo
7.
J Biol Chem ; 288(10): 6912-20, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23329827

RESUMEN

Protein glycosylation is widespread throughout all three domains of life. Bacterial protein N-glycosylation and its application to engineering recombinant glycoproteins continue to be actively studied. Here, we focus on advances made in the last 2 years, including the characterization of novel bacterial N-glycosylation pathways, examination of pathway enzymes and evolution, biological roles of protein modification in the native host, and exploitation of the N-glycosylation pathways to create novel vaccines and diagnostics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Periplasma/metabolismo , Transducción de Señal , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicosilación , Humanos , Modelos Inmunológicos , Mutación/inmunología
8.
Mol Cell Proteomics ; 11(11): 1203-19, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859570

RESUMEN

The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter/metabolismo , Redes y Vías Metabólicas , Secuencia de Aminoácidos , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Campylobacter/clasificación , Campylobacter/genética , Campylobacter/inmunología , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Humanos , Sueros Inmunes/inmunología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/inmunología , Filogenia , Polisacáridos/inmunología , Reproducibilidad de los Resultados
9.
Proc Natl Acad Sci U S A ; 108(17): 7194-9, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21482772

RESUMEN

Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.


Asunto(s)
Campylobacter jejuni/crecimiento & desarrollo , Fucosa/metabolismo , Animales , Infecciones por Campylobacter/genética , Infecciones por Campylobacter/metabolismo , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Fucosa/farmacología , Islas Genómicas , Humanos , Mutación , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/microbiología
10.
Heliyon ; 10(19): e38895, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39444402

RESUMEN

Cystic Fibrosis (CF) airway disease is characterized by impaired mucociliary clearance, chronic, polymicrobial infections and robust, neutrophil-dominated inflammation. Pulmonary disease is the leading cause of morbidity and mortality in people with CF and is due to progressive airflow obstruction and ultimately respiratory failure. One of the earliest abnormalities in CF airway disease is the recruitment of neutrophils to the lungs. Neutrophil activation leads to the release of their intracellular content, including neutrophil elastase (NE), that damages lung tissues in CF. Our goal is to characterize a known bacterial NE inhibitor, ecotin, in the CF airway environment. Our results indicate that ecotins cloned from four Gram-negative bacterial species (Campylobacter rectus, Campylobacter showae, Escherichia coli and Pseudomonas aeruginosa) inhibit NE activity in CF sputum samples in a dose-dependent manner. Although we observed differences in the NE-inhibitory activity of the tested ecotins with the Campylobacter homologs being the most effective in NE inhibition in CF sputa, none of the ecotins impaired the ability of human neutrophils to kill major CF respiratory pathogens, P. aeruginosa or S. aureus, in vitro. Overall, we demonstrate that bacterial ecotins inhibit NE activity in CF sputa without compromising bacterial killing by neutrophils.

11.
J Biol Chem ; 287(35): 29384-96, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22761430

RESUMEN

Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Etanolaminofosfotransferasa/metabolismo , Etanolaminas/metabolismo , Glicoproteínas de Membrana/metabolismo , Periplasma/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidad , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Glicosilación , Glicoproteínas de Membrana/genética , Familia de Multigenes/fisiología , Oligosacáridos/genética , Oligosacáridos/metabolismo , Periplasma/genética , Factores de Virulencia/genética
12.
Infect Immun ; 81(5): 1674-82, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23460522

RESUMEN

Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Campylobacter jejuni/fisiología , Polisacáridos Bacterianos/fisiología , Animales , Infecciones por Campylobacter/metabolismo , Infecciones por Campylobacter/microbiología , Ciego/microbiología , Pollos/microbiología , Recuento de Colonia Microbiana , Glicosilación , Hexosiltransferasas/deficiencia , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Péptido Hidrolasas/metabolismo , Enfermedades de las Aves de Corral/microbiología
13.
Biopolymers ; 99(10): 772-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23749285

RESUMEN

All Campylobacter species are capable of N-glycosylating their proteins and releasing the same oligosaccharides into the periplasm as free oligosaccharides (fOS). Previously, analysis of fOS production in Campylobacter required fOS derivatization or large culture volumes and several chromatography steps prior to fOS analysis. In this study, label-free fOS extraction and purification methods were developed and coupled with quantitative analysis techniques. Our method follows three simple steps: (1) fOS extraction from the periplasmic space, (2) fOS purification using silica gel chromatography followed by porous graphitized carbon purification and (3) fOS analysis and accurate quantitation using a combination of thin-layer chromatography, mass spectrometry, NMR, and high performance anion exchange chromatography with pulsed amperometric detection. We applied our techniques to analyze fOS from C. jejuni, C. lari, C. rectus, and C. fetus fetus that produce different fOS structures. We accurately quantified fOS in Campylobacter species that ranged from 7.80 (±0.84) to 49.82 (±0.46) nmoles per gram of wet cell pellet and determined that the C. jejuni fOS comprises 2.5% of the dry cell weight. In addition, a novel di-phosphorylated fOS species was identified in C. lari. This method provides a sensitive and quantitative method to investigate the genesis, biology and breakdown of fOS in the bacterial N-glycosylation systems.


Asunto(s)
Campylobacter jejuni , Oligosacáridos , Proteínas Bacterianas/metabolismo , Glicosilación , Espectrometría de Masas , Datos de Secuencia Molecular , Oligosacáridos/química
14.
Proc Natl Acad Sci U S A ; 106(35): 15019-24, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706478

RESUMEN

The food-borne pathogen Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide and the most frequent antecedent in neuropathies such as the Guillain-Barré and Miller Fisher syndromes. C. jejuni was demonstrated to possess an N-linked protein glycosylation pathway that adds a conserved heptasaccharide to >40 periplasmic and membrane proteins. Recently, we showed that C. jejuni also produces free heptasaccharides derived from the N-glycan pathway reminiscent of the free oligosaccharides (fOS) produced by eukaryotes. Herein, we demonstrate that C. jejuni fOS are produced in response to changes in the osmolarity of the environment and bacterial growth phase. We provide evidence showing the conserved WWDYG motif of the oligosaccharyltransferase, PglB, is necessary for fOS release into the periplasm. This report demonstrates that fOS from an N-glycosylation pathway in bacteria are potentially equivalent to osmoregulated periplasmic glucans in other Gram-negative organisms.


Asunto(s)
Campylobacter jejuni/metabolismo , Oligosacáridos/metabolismo , Campylobacter jejuni/química , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Espectrometría de Masas , Mutación/genética , Oligosacáridos/química , Presión Osmótica , Periplasma/metabolismo , Polisacáridos/metabolismo , Transcripción Genética
15.
J Biol Chem ; 285(1): 493-501, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19887444

RESUMEN

UDP-galactopyranose mutases (UGM) are the enzymes responsible for the synthesis of UDP-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme, encoded by the glf gene, is present in bacteria, parasites, and fungi that express Galf in their glycoconjugates. Recently, a UGM homologue encoded by the cj1439 gene has been identified in Campylobacter jejuni 11168, an organism possessing no Galf-containing glycoconjugates. However, the capsular polysaccharide from this strain contains a 2-acetamido-2-deoxy-d-galactofuranose (GalfNAc) moiety. Using an in vitro high performance liquid chromatography assay and complementation studies, we characterized the activity of this UGM homologue. The enzyme, which we have renamed UDP-N-acetylgalactopyranose mutase (UNGM), has relaxed specificity and can use either UDP-Gal or UDP-GalNAc as a substrate. Complementation studies of mutase knock-outs in C. jejuni 11168 and Escherichia coli W3110, the latter containing Galf residues in its lipopolysaccharide, demonstrated that the enzyme recognizes both UDP-Gal and UDP-GalNAc in vivo. A homology model of UNGM and site-directed mutagenesis led to the identification of two active site amino acid residues involved in the recognition of the UDP-GalNAc substrate. The specificity of UNGM was characterized using a two-substrate co-incubation assay, which demonstrated, surprisingly, that UDP-Gal is a better substrate than UDP-GalNAc.


Asunto(s)
Campylobacter jejuni/enzimología , Transferasas Intramoleculares/metabolismo , Alelos , Arginina/metabolismo , Biocatálisis , Bioensayo , Secuencia de Carbohidratos , Dominio Catalítico , Escherichia coli/enzimología , Prueba de Complementación Genética , Transferasas Intramoleculares/química , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxazoles/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Uridina Difosfato N-Acetilgalactosamina/metabolismo
16.
Mol Microbiol ; 75(5): 1133-44, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20487300

RESUMEN

The availability of nutrients is a major determinant for the timing of morphogenesis and antibiotic production in the soil-dwelling bacterium Streptomyces coelicolor. Here we show that N-acetylglucosamine transport, the first step of an important nutrient signalling cascade, is mediated by the NagE2 permease of the phosphotransferase system, and that the activity of this permease is linked to nutritional control of development and antibiotic production. The permease serves as a high-affinity transporter for N-acetylglucosamine (K(m) of 2.6 microM). The permease complex was reconstituted with individually purified components. This showed that uptake of N-acetylglucosamine requires a phosphoryl group transfer from phosphoenolpyruvate via the phosphotransferases EI, HPr and IIA(Crr) to NagF, which in turn phosphorylates N-acetylglucosamine during transport. Transcription of the nagF and nagE2 genes is induced by N-acetylglucosamine. Nutrient signalling by N-acetylglucosamine that triggers the onset of development was abolished in the nagE2 and nagF mutants. nagE2 is subject to multi-level control by the global transcription factor DasR and the activator AtrA that also stimulates genes for antibiotic actinorhodin biosynthesis. Hence, it is apparent that streptomycetes tightly control the nutritional state in a complex manner to ensure the correct timing for the developmental programme.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Streptomyces coelicolor/fisiología , Antraquinonas/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/genética , Fosfatos/metabolismo , Fosfoenolpiruvato/metabolismo , Transducción de Señal , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
17.
Mol Cell Proteomics ; 8(9): 2170-85, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19525481

RESUMEN

Glycoprotein structure determination and quantification by MS requires efficient isolation of glycopeptides from a proteolytic digest of complex protein mixtures. Here we describe that the use of acids as ion-pairing reagents in normal-phase chromatography (IP-NPLC) considerably increases the hydrophobicity differences between non-glycopeptides and glycopeptides, thereby resulting in the reproducible isolation of N-linked high mannose type and sialylated glycopeptides from the tryptic digest of a ribonuclease B and fetuin mixture. The elution order of non-glycopeptides relative to glycopeptides in IP-NPLC is predictable by their hydrophobicity values calculated using the Wimley-White water/octanol hydrophobicity scale. O-linked glycopeptides can be efficiently isolated from fetuin tryptic digests using IP-NPLC when N-glycans are first removed with PNGase. IP-NPLC recovers close to 100% of bacterial N-linked glycopeptides modified with non-sialylated heptasaccharides from tryptic digests of periplasmic protein extracts from Campylobacter jejuni 11168 and its pglD mutant. Label-free nano-flow reversed-phase LC-MS is used for quantification of differentially expressed glycopeptides from the C. jejuni wild-type and pglD mutant followed by identification of these glycoproteins using multiple stage tandem MS. This method further confirms the acetyltransferase activity of PglD and demonstrates for the first time that heptasaccharides containing monoacetylated bacillosamine are transferred to proteins in both the wild-type and mutant strains. We believe that IP-NPLC will be a useful tool for quantitative glycoproteomics.


Asunto(s)
Glicoproteínas/análisis , Espectrometría de Masas/métodos , Ácidos/farmacología , Secuencia de Aminoácidos , Animales , Campylobacter jejuni/química , Bovinos , Cromatografía Liquida , Glicopéptidos/análisis , Glicopéptidos/química , Glicoproteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Mutación/genética , Ácido N-Acetilneuramínico , Estándares de Referencia , Espectrometría de Masas en Tándem , Tripsina/metabolismo , alfa-Fetoproteínas/metabolismo
18.
Front Microbiol ; 12: 734526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867850

RESUMEN

Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.

19.
ACS Chem Biol ; 16(11): 2690-2701, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34726367

RESUMEN

Campylobacter jejuni is a significant cause of human gastroenteritis worldwide, and all strains express an N-glycan that is added to at least 80 different proteins. We characterized 98 C. jejuni isolates from infants from 7 low- and middle-income countries and identified 4 isolates unreactive with our N-glycan-specific antiserum that was raised against the C. jejuni heptasaccharide composed of GalNAc-GalNAc-GalNAc(Glc)-GalNAc-GalNAc-diNAcBac. Mass spectrometric analyses indicated these isolates express a hexasaccharide lacking the glucose branch. Although all 4 strains encode the PglI glucosyltransferase (GlcTF), one aspartate in the DXDD motif was missing, an alteration also present in ∼4% of all available PglI sequences. Deleting this residue from an active PglI resulted in a nonfunctional GlcTF when the protein glycosylation system was reconstituted in E. coli, while replacement with Glu/Ala was not deleterious. Molecular modeling proposed a mechanism for how the DXDD residues and the structure/length beyond the motif influence activity. Mouse vaccination with an E. coli strain expressing the full-length heptasaccharide produced N-glycan-specific antibodies and a corresponding reduction in Campylobacter colonization and weight loss following challenge. However, the antibodies did not recognize the hexasaccharide and were unable to opsonize C. jejuni isolates lacking glucose, suggesting this should be considered when designing N-glycan-based vaccines to prevent campylobacteriosis.


Asunto(s)
Campylobacter jejuni/metabolismo , Glucosa/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Glicosilación , Sueros Inmunes , Ratones , Fagocitosis , Polisacáridos/química , Alineación de Secuencia
20.
Glycobiology ; 20(11): 1366-72, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20581006

RESUMEN

We describe a phage display technique that allows the production and selective enrichment of phages that display an N-glycoprotein (glycophages). We applied glycophage display to select functional glycosylation sequons from a pool of randomized acceptor sequences. Our system provides a genetic platform to study and engineer different steps in the pathway of bacterial N-linked protein glycosylation.


Asunto(s)
Colifagos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virología , Glicosilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA