Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(17): 4586-4604.e20, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39137778

RESUMEN

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.


Asunto(s)
COVID-19 , Gripe Humana , Animales , Humanos , Ratones , COVID-19/virología , COVID-19/genética , Gripe Humana/virología , Replicación Viral , Macrófagos/metabolismo , Macrófagos/virología , Femenino , Masculino , SARS-CoV-2 , Pulmón/virología , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ácido Oléico/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Ratones Noqueados , Carga Viral , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Infecciones por Orthomyxoviridae/virología , Infecciones del Sistema Respiratorio/virología , Niño
2.
Nature ; 632(8025): 622-629, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112696

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Asunto(s)
Anticuerpos Antivirales , Autoanticuerpos , COVID-19 , Reacciones Cruzadas , Epítopos , Imitación Molecular , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Humanos , Anticuerpos Antivirales/inmunología , Autoanticuerpos/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/complicaciones , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Epítopos/química , Imitación Molecular/inmunología , Fosfoproteínas/química , Fosfoproteínas/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Nexinas de Clasificación/química , Nexinas de Clasificación/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Síndrome de Respuesta Inflamatoria Sistémica/virología , Linfocitos T/inmunología
3.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
5.
Circulation ; 147(11): 867-876, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36597886

RESUMEN

BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.


Asunto(s)
COVID-19 , Miocarditis , Adolescente , Niño , Adulto Joven , Humanos , Vacunas contra la COVID-19/efectos adversos , Miocarditis/etiología , Glicoproteína de la Espiga del Coronavirus , COVID-19/prevención & control , SARS-CoV-2 , Citocinas , Autoanticuerpos , Anticuerpos Antivirales
6.
J Allergy Clin Immunol ; 151(4): 926-930.e2, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36509151

RESUMEN

BACKGROUND: Autoantibodies against type I IFNs occur in approximately 10% of adults with life-threatening coronavirus disease 2019 (COVID-19). The frequency of anti-IFN autoantibodies in children with severe sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: We quantified anti-type I IFN autoantibodies in a multicenter cohort of children with severe COVID-19, multisystem inflammatory syndrome in children (MIS-C), and mild SARS-CoV-2 infections. METHODS: Circulating anti-IFN-α2 antibodies were measured by a radioligand binding assay. Whole-exome sequencing, RNA sequencing, and functional studies of peripheral blood mononuclear cells were used to study any patients with levels of anti-IFN-α2 autoantibodies exceeding the assay's positive control. RESULTS: Among 168 patients with severe COVID-19, 199 with MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had high levels of anti-IFN-α2 antibodies. Anti-IFN-α2 autoantibodies were not detected in patients treated with intravenous immunoglobulin before sample collection. Whole-exome sequencing identified a missense variant in the ankyrin domain of NFKB2, encoding the p100 subunit of nuclear factor kappa-light-chain enhancer of activated B cells, aka NF-κB, essential for noncanonical NF-κB signaling. The patient's peripheral blood mononuclear cells exhibited impaired cleavage of p100 characteristic of NFKB2 haploinsufficiency, an inborn error of immunity with a high prevalence of autoimmunity. CONCLUSIONS: High levels of anti-IFN-α2 autoantibodies in children and adolescents with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare but can occur in patients with inborn errors of immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Adulto , Humanos , Niño , Adolescente , SARS-CoV-2 , Autoanticuerpos , FN-kappa B , Haploinsuficiencia , Leucocitos Mononucleares , Subunidad p52 de NF-kappa B
7.
Purinergic Signal ; 19(4): 651-662, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36596963

RESUMEN

Neutrophils (PMNs) require extracellular ATP and adenosine (ADO) to fight bacterial infections, which often have life-threatening consequences in pediatric patients. We wondered whether the ATP and ADO levels in the plasma of children change with age and if these changes influence the antimicrobial efficacy of the PMNs of these children. We measured plasma concentrations of ATP and ADO and the activities of the enzymes responsible for the breakdown of these mediators in plasma samples from healthy children and adolescents (n = 45) ranging in age from 0.2 to 15 years. In addition, using blood samples of these individuals, we compared how effective their PMNs were in the phagocytosis of bacteria. In an experimental sepsis model with young (10 days) and adolescent mice (10 weeks), we studied how age influenced the resilience of these animals to bacterial infections and whether addition of ATP could improve the antimicrobial capacity of their PMNs. We found that plasma ATP levels correlated with age and were significantly lower in infants (< 1 year) than in adolescents (12-15 years). In addition, we observed significantly higher plasma ATPase and adenosine deaminase activities in children (< 12 years) when compared to the adolescent population. The activities of these ATP and ADO breakdown processes correlated inversely with age and with the ability of PMNs to phagocytize bacteria. Similar to their human counterparts, young mice also had significantly lower plasma ATP levels when compared to adolescent animals. In addition, we found that mortality of young mice after bacterial infection was significantly higher than that of adolescent mice. Moreover, bacterial phagocytosis by PMNs of young mice was weaker when compared to that of older mice. Finally, we found that ATP supplementation could recover bacterial phagocytosis of young mice to levels similar to those of adolescent mice. Our findings suggest that rapid ATP hydrolysis in the plasma of young children lowers the antimicrobial functions of their PMNs and that this may contribute to the vulnerability of pediatric patients to bacterial infections.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Adolescente , Humanos , Ratones , Niño , Animales , Preescolar , Lactante , Neutrófilos/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Infecciones Bacterianas/metabolismo , Antiinfecciosos/metabolismo , Fagocitosis
8.
J Infect Dis ; 226(7): 1286-1294, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35899844

RESUMEN

Respiratory coinfection of influenza with Staphylococcus aureus often causes severe disease; methicillin-resistant S. aureus (MRSA) coinfection is frequently fatal. Understanding disease pathogenesis may inform therapies. We aimed to identify host and pathogen transcriptomic (messenger RNA) signatures from the respiratory compartment of pediatric patients critically ill with influenza-S. aureus coinfection (ISAC), signatures that predict worse outcomes. Messenger RNA extracted from endotracheal aspirate samples was evaluated for S. aureus and host transcriptomic biosignatures. Influenza-MRSA outcomes were worse, but of 190 S. aureus virulence-associated genes, 6 were differentially expressed between MRSA-coinfected versus methicillin-susceptible S. aureus-coinfected patients, and none discriminated outcome. Host gene expression in patients with ISAC was compared with that in patients with influenza infection alone. Patients with poor clinical outcomes (death or prolonged multiorgan dysfunction) had relatively reduced expression of interferons and down-regulation of interferon γ-induced immune cell chemoattractants CXCL10 and CXCL11. In ISAC, airway host but not pathogen gene expression profiles predicted worse clinical outcomes.


Asunto(s)
Coinfección , Gripe Humana , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Infecciones Estafilocócicas , Factores Quimiotácticos , Niño , Coinfección/patología , Humanos , Gripe Humana/complicaciones , Gripe Humana/genética , Interferón gamma , Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Neumonía Estafilocócica/genética , Neumonía Estafilocócica/patología , ARN Mensajero , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Transcriptoma
9.
J Infect Dis ; 226(11): 2030-2036, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35986912

RESUMEN

BACKGROUND: Seasonal influenza virus infection causes a range of disease severity, including lower respiratory tract infection with respiratory failure. We evaluated the association of common variants in interferon (IFN) regulatory genes with susceptibility to critical influenza infection in children. METHODS: We performed targeted sequencing of 69 influenza-associated candidate genes in 348 children from 24 US centers admitted to the intensive care unit with influenza infection and lacking risk factors for severe influenza infection (PICFlu cohort, 59.4% male). As controls, whole genome sequencing from 675 children with asthma (CAMP cohort, 62.5% male) was compared. We assessed functional relevance using PICFlu whole blood gene expression levels for the gene and calculated IFN gene signature score. RESULTS: Common variants in DDX58, encoding the retinoic acid-inducible gene I (RIG-I) receptor, demonstrated association above or around the Bonferroni-corrected threshold (synonymous variant rs3205166; intronic variant rs4487862). The intronic single-nucleotide polymorphism rs4487862 minor allele was associated with decreased DDX58 expression and IFN signature (P < .05 and P = .0009, respectively) which provided evidence supporting the genetic variants' impact on RIG-I and IFN immunity. CONCLUSIONS: We provide evidence associating common gene variants in DDX58 with susceptibility to severe influenza infection in children. RIG-I may be essential for preventing life-threatening influenza-associated disease.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Niño , Humanos , Masculino , Adolescente , Femenino , Gripe Humana/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Receptores Inmunológicos/genética , Polimorfismo de Nucleótido Simple , Interferones/genética
10.
BMC Bioinformatics ; 23(1): 547, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536276

RESUMEN

As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.


Asunto(s)
COVID-19 , Humanos , Secuencia de Bases , SARS-CoV-2 , Análisis por Conglomerados , Bases de Datos Factuales
11.
Clin Infect Dis ; 75(2): 230-238, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35024795

RESUMEN

BACKGROUND: Predominance of 2 antigenically drifted influenza viruses during the 2019-2020 season offered an opportunity to assess vaccine effectiveness against life-threatening pediatric influenza disease from vaccine-mismatched viruses in the United States. METHODS: We enrolled children aged <18 years admitted to the intensive care unit with acute respiratory infection across 17 hospitals. Respiratory specimens were tested using reverse-transcription polymerase chain reaction for influenza viruses and sequenced. Using a test-negative design, we estimated vaccine effectiveness comparing odds of vaccination in test-positive case patients vs test-negative controls, stratifying by age, virus type, and severity. Life-threating influenza included death or invasive mechanical ventilation, vasopressors, cardiopulmonary resuscitation, dialysis, or extracorporeal membrane oxygenation. RESULTS: We enrolled 159 critically ill influenza case-patients (70% ≤8 years; 51% A/H1N1pdm09 and 25% B-Victoria viruses) and 132 controls (69% were aged ≤8 years). Among 56 sequenced A/H1N1pdm09 viruses, 29 (52%) were vaccine-mismatched (A/H1N1pdm09/5A+156K) and 23 (41%) were vaccine-matched (A/H1N1pdm09/5A+187A,189E). Among sequenced B-lineage viruses, majority (30 of 31) were vaccine-mismatched. Effectiveness against critical influenza was 63% (95% confidence interval [CI], 38% to 78%) and similar by age. Effectiveness was 75% (95% CI, 49% to 88%) against life-threatening influenza vs 57% (95% CI, 24% to 76%) against non-life-threating influenza. Effectiveness was 78% (95% CI, 41% to 92%) against matched A(H1N1)pdm09 viruses, 47% (95% CI, -21% to 77%) against mismatched A(H1N1)pdm09 viruses, and 75% (95% CI, 37% to 90%) against mismatched B-Victoria viruses. CONCLUSIONS: During a season when vaccine-mismatched influenza viruses predominated, vaccination was associated with a reduced risk of critical and life-threatening influenza illness in children.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Estudios de Casos y Controles , Niño , Humanos , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estaciones del Año , Estados Unidos/epidemiología , Vacunación , Eficacia de las Vacunas
12.
Clin Infect Dis ; 75(8): 1351-1358, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35213684

RESUMEN

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood has high sensitivity in adults with acute coronavirus disease 2019 (COVID-19), but sensitivity in pediatric patients is unclear. Recent data suggest that persistent SARS-CoV-2 spike antigenemia may contribute to multisystem inflammatory syndrome in children (MIS-C). We quantified SARS-CoV-2 nucleocapsid (N) and spike (S) antigens in blood of pediatric patients with either acute COVID-19 or MIS-C using ultrasensitive immunoassays (Meso Scale Discovery). METHODS: Plasma was collected from inpatients (<21 years) enrolled across 15 hospitals in 15 US states. Acute COVID-19 patients (n = 36) had a range of disease severity and positive nasopharyngeal SARS-CoV-2 RT-PCR within 24 hours of blood collection. Patients with MIS-C (n = 53) met CDC criteria and tested positive for SARS-CoV-2 (RT-PCR or serology). Controls were patients pre-COVID-19 (n = 67) or within 24 hours of negative RT-PCR (n = 43). RESULTS: Specificities of N and S assays were 95-97% and 100%, respectively. In acute COVID-19 patients, N/S plasma assays had 89%/64% sensitivity; sensitivities in patients with concurrent nasopharyngeal swab cycle threshold (Ct) ≤35 were 93%/63%. Antigen concentrations ranged from 1.28-3844 pg/mL (N) and 1.65-1071 pg/mL (S) and correlated with disease severity. In MIS-C, antigens were detected in 3/53 (5.7%) samples (3 N-positive: 1.7, 1.9, 121.1 pg/mL; 1 S-positive: 2.3 pg/mL); the patient with highest N had positive nasopharyngeal RT-PCR (Ct 22.3) concurrent with blood draw. CONCLUSIONS: Ultrasensitive blood SARS-CoV-2 antigen measurement has high diagnostic yield in children with acute COVID-19. Antigens were undetectable in most MIS-C patients, suggesting that persistent antigenemia is not a common contributor to MIS-C pathogenesis.


Asunto(s)
COVID-19 , Adulto , Antígenos Virales , COVID-19/complicaciones , COVID-19/diagnóstico , Niño , Humanos , Inmunoensayo , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
13.
J Allergy Clin Immunol ; 148(3): 732-738.e1, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224783

RESUMEN

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a pediatric complication of severe acute respiratory syndrome coronavirus 2 infection that is characterized by multiorgan inflammation and frequently by cardiovascular dysfunction. It occurs predominantly in otherwise healthy children. We previously reported haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of type I and II interferons, as a genetic risk factor for MIS-C. OBJECTIVES: We aimed to identify additional genetic mechanisms underlying susceptibility to severe acute respiratory syndrome coronavirus 2-associated MIS-C. METHODS: In a single-center, prospective cohort study, whole exome sequencing was performed on patients with MIS-C. The impact of candidate variants was tested by using patients' PBMCs obtained at least 7 months after recovery. RESULTS: We enrolled 18 patients with MIS-C (median age = 8 years; interquartile range = 5-12.25 years), of whom 89% had no conditions other than obesity. In 2 boys with no significant infection history, we identified and validated hemizygous deleterious defects in XIAP, encoding X-linked inhibitor of apoptosis, and CYBB, encoding cytochrome b-245, beta subunit. Including the previously reported SOCS1 haploinsufficiency, a genetic diagnosis was identified in 3 of 18 patients (17%). In contrast to patients with mild COVID-19, patients with defects in SOCS1, XIAP, or CYBB exhibit an inflammatory immune cell transcriptome with enrichment of differentially expressed genes in pathways downstream of IL-18, oncostatin M, and nuclear factor κB, even after recovery. CONCLUSIONS: Although inflammatory disorders are rare in the general population, our cohort of patients with MIS-C was enriched for monogenic susceptibility to inflammation. Our results support the use of next-generation sequencing in previously healthy children who develop MIS-C.


Asunto(s)
COVID-19/etiología , COVID-19/metabolismo , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/virología , Niño , Preescolar , Citocinas/metabolismo , Femenino , Interacciones Huésped-Patógeno/inmunología , Humanos , Masculino , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
14.
J Allergy Clin Immunol ; 145(6): 1673-1680.e11, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32035159

RESUMEN

BACKGROUND: Decreased TNF-α production in whole blood after ex vivo LPS stimulation indicates suppression of the Toll-like receptor (TLR)4 pathway. This is associated with increased mortality in pediatric influenza critical illness. Whether antiviral immune signaling pathways are also suppressed in these patients is unclear. OBJECTIVES: We sought to evaluate suppression of the TLR4 and the antiviral retinoic acid-inducible gene-I (RIG-I) pathways with clinical outcomes in children with severe influenza infection. METHODS: In this 24-center, prospective, observational cohort study of children with confirmed influenza infection, blood was collected within 72 hours of intensive care unit admission. Ex vivo whole blood stimulations were performed with matched controls using the viral ligand polyinosinic-polycytidylic acid-low-molecular-weight/LyoVec and LPS to evaluate IFN-α and TNF-α production capacities (RIG-I and TLR4 pathways, respectively). RESULTS: Suppression of either IFN-α or TNF-α production capacity was associated with longer duration of mechanical ventilation and hospitalization, and increased organ dysfunction. Children with suppression of both RIG-I and TLR4 pathways (n = 33 of 103 [32%]) were more likely to have prolonged (≥7 days) multiple-organ dysfunction syndrome (30.3% vs 8.6%; P = .004) or prolonged hypoxemic respiratory failure (39.4% vs 11.4%; P = .001) compared with those with single- or no pathway suppression. CONCLUSIONS: Suppression of both RIG-I and TLR4 signaling pathways, essential for respective antiviral and antibacterial responses, is common in previously immunocompetent children with influenza-related critical illness and is associated with bacterial coinfection and adverse outcomes. Prospective testing of both pathways may aid in risk-stratification and in immune monitoring.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Gripe Humana/metabolismo , Receptores Inmunológicos/metabolismo , Receptor Toll-Like 4/metabolismo , Adolescente , Antivirales/uso terapéutico , Niño , Preescolar , Enfermedad Crítica , Femenino , Humanos , Gripe Humana/tratamiento farmacológico , Interferón-alfa/metabolismo , Masculino , Estudios Prospectivos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
15.
Clin Infect Dis ; 68(3): 365-372, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29893805

RESUMEN

Background: Coinfection with influenza virus and methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening necrotizing pneumonia in children. Sporadic incidence precludes evaluation of antimicrobial efficacy. We assessed the clinical characteristics and outcomes of critically ill children with influenza-MRSA pneumonia and evaluated antibiotic use. Methods: We enrolled children (<18 years) with influenza infection and respiratory failure across 34 pediatric intensive care units 11/2008-5/2016. We compared baseline characteristics, clinical courses, and therapies in children with MRSA coinfection, non-MRSA bacterial coinfection, and no bacterial coinfection. Results: We enrolled 170 children (127 influenza A, 43 influenza B). Children with influenza-MRSA pneumonia (N = 30, 87% previously healthy) were older than those with non-MRSA (N = 61) or no (N = 79) bacterial coinfections. Influenza-MRSA was associated with increased leukopenia, acute lung injury, vasopressor use, extracorporeal life support, and mortality than either group (P ≤ .0001). Influenza-related mortality was 40% with MRSA compared to 4.3% without (relative risk [RR], 9.3; 95% confidence interval [CI], 3.8-22.9). Of 29/30 children with MRSA who received vancomycin within the first 24 hours of hospitalization, mortality was 12.5% (N = 2/16) if treatment also included a second anti-MRSA antibiotic compared to 69.2% (N = 9/13) with vancomycin monotherapy (RR, 5.5; 95% CI, 1.4, 21.3; P = .003). Vancomycin dosing did not influence initial trough levels; 78% were <10 µg/mL. Conclusions: Influenza-MRSA coinfection is associated with high fatality in critically ill children. These data support early addition of a second anti-MRSA antibiotic to vancomycin in suspected severe cases.


Asunto(s)
Antibacterianos/uso terapéutico , Coinfección/tratamiento farmacológico , Enfermedad Crítica , Gripe Humana/complicaciones , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Neumonía Estafilocócica/tratamiento farmacológico , Vancomicina/uso terapéutico , Adolescente , Niño , Preescolar , Coinfección/microbiología , Coinfección/mortalidad , Coinfección/patología , Femenino , Humanos , Lactante , Recién Nacido , Gripe Humana/mortalidad , Gripe Humana/patología , Masculino , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/mortalidad , Neumonía Estafilocócica/patología , Estudios Prospectivos , Análisis de Supervivencia , Resultado del Tratamiento
16.
Genes (Basel) ; 14(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37372314

RESUMEN

We are interested in detecting a departure from the baseline in a longitudinal analysis in the context of multiple organ dysfunction syndrome (MODS). In particular, we are given gene expression reads at two time points for a fixed number of genes and individuals. The individuals can be subdivided into two groups, denoted as groups A and B. Using the two time points, we compute a contrast of gene expression reads per individual and gene. The age of each individual is known and it is used to compute, for each gene separately, a linear regression of the gene expression contrasts on the individual's age. Looking at the intercept of the linear regression to detect a departure from the baseline, we aim to reliably single out those genes for which there is a difference in the intercept among those individuals in group A and not in group B. In this work, we develop testing methodology for this setting based on two hypothesis tests-one under the null and one under an appropriately formulated alternative. We demonstrate the validity of our approach using a dataset created by bootstrapping from a real data application in the context of multiple organ dysfunction syndrome (MODS).


Asunto(s)
Insuficiencia Multiorgánica , Humanos , Insuficiencia Multiorgánica/genética , Insuficiencia Multiorgánica/diagnóstico , Modelos Lineales , Expresión Génica
17.
Nat Commun ; 14(1): 7952, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040697

RESUMEN

Emergence of highly transmissible Omicron subvariants led to increased SARS-CoV-2 infection and disease in children. However, minimal knowledge exists regarding the neutralization capacity against circulating Omicron BA.4/BA.5, BA.2.75, BQ.1, BQ.1.1 and XBB.1 subvariants following SARS-CoV-2 vaccination in children versus during acute or convalescent COVID-19, or versus multisystem inflammatory syndrome (MIS-C). Here, we evaluate virus-neutralizing capacity against SARS-CoV-2 variants in 151 age-stratified children ( <5, 5-11, 12-21 years old) hospitalized with acute severe COVID-19 or MIS-C or convalescent mild (outpatient) infection compared with 62 age-stratified vaccinated children. An age-associated effect on neutralizing antibodies is observed against SARS-CoV-2 following acute COVID-19 or vaccination. The primary series BNT162b2 mRNA vaccinated adolescents show higher vaccine-homologous WA-1 neutralizing titers compared with <12 years vaccinated children. Post-infection antibodies did not neutralize BQ.1, BQ.1.1 and XBB.1 subvariants. In contrast, monovalent mRNA vaccination induces more cross-neutralizing antibodies in young children <5 years against BQ.1, BQ.1.1 and XBB.1 variants compared with ≥5 years old children. Our study demonstrates that in children, infection and monovalent vaccination-induced neutralization activity is low against BQ.1, BQ.1.1 and XBB.1 variants. These findings suggest a need for improved SARS-CoV-2 vaccines to induce durable, more cross-reactive neutralizing antibodies to provide effective protection against emerging variants in children.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Niño , Humanos , Preescolar , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacuna BNT162 , Vacunación , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , ARN Mensajero , Anticuerpos Antivirales
18.
Nat Commun ; 14(1): 3870, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391405

RESUMEN

Acute respiratory distress syndrome (ARDS), termed pediatric ARDS (pARDS) in children, is a severe form of acute respiratory failure (ARF). Pathologic immune responses are implicated in pARDS pathogenesis. Here, we present a description of microbial sequencing and single cell gene expression in tracheal aspirates (TAs) obtained longitudinally from infants with ARF. We show reduced interferon stimulated gene (ISG) expression, altered mononuclear phagocyte (MNP) transcriptional programs, and progressive airway neutrophilia associated with unique transcriptional profiles in patients with moderate to severe pARDS compared to those with no or mild pARDS. We additionally show that an innate immune cell product, Folate Receptor 3 (FOLR3), is enriched in moderate or severe pARDS. Our findings demonstrate distinct inflammatory responses in pARDS that are dependent upon etiology and severity and specifically implicate reduced ISG expression, altered macrophage repair-associated transcriptional programs, and accumulation of aged neutrophils in the pathogenesis of moderate to severe pARDS caused by RSV.


Asunto(s)
Síndrome de Dificultad Respiratoria , Transcriptoma , Lactante , Humanos , Niño , Anciano , Transcriptoma/genética , Perfilación de la Expresión Génica , Síndrome de Dificultad Respiratoria/genética , Interferones , Leucocitosis
19.
Front Immunol ; 14: 1220028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533854

RESUMEN

Background: Influenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection. Methods: We measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q<0.05). Results: Comparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week. Conclusion: Thus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.


Asunto(s)
Infecciones Bacterianas , Gripe Humana , Humanos , Insuficiencia Multiorgánica/genética , Gripe Humana/genética , Gripe Humana/complicaciones , Transcriptoma , Fenotipo , Hospitalización , Infecciones Bacterianas/complicaciones
20.
Vaccines (Basel) ; 10(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214728

RESUMEN

Mucosal immunity plays an important role in the control of viral respiratory infections like SARS-CoV-2. While systemic immune responses against the SARS-2-CoV-2 have been studied in children, there is no information on mucosal antibody response, especially in the lower respiratory tract of children coronavirus disease 2019 (COVID-19) and post-infectious multisystem inflammatory syndrome in children (MIS-C) against emerging SARS-CoV-2 variants. Therefore, we evaluated neutralizing antibody responses in paired plasma and endotracheal aspirates of pediatric severe, acute COVID-19 or MIS-C patients against SARS-CoV-2 WA1/2020, as well as against variants of concern (VOCs). Neutralizing antibody responses against the SARS-CoV-2 WA1/2020 strain in pediatric plasma were 2-fold or 35-fold higher compared with the matched endotracheal aspirate in COVID-19 or MIS-C patients, respectively. In contrast to plasma, neutralizing antibody responses against the VOCs and variants of interest (VOIs) in endotracheal aspirates were lower, with only one endotracheal aspirate demonstrating neutralizing titers against the Iota, Kappa, Beta, Gamma, and Omicron variants. In conclusion, our findings suggest that children and adolescents with severe COVID-19 or MIS-C have weak mucosal neutralizing antibodies in the trachea against circulating SARS-CoV-2 Omicron and other VOCs, which may have implications for recovery and for re-infection with emerging SARS-CoV-2 variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA