Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(33): e2202661119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939668

RESUMEN

In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Péptido Hidrolasas , Feromonas , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Péptido Hidrolasas/genética , Péptido Hidrolasas/fisiología , Feromonas/biosíntesis , Percepción de Quorum/genética , Staphylococcus aureus/patogenicidad , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
2.
Antimicrob Agents Chemother ; : e0023524, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072634

RESUMEN

In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.

3.
Nature ; 613(7945): 629, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36694015
4.
Mol Cell ; 57(1): 138-49, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25498143

RESUMEN

In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent, and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease and may shape pathogen genomes beyond the confines of their attachment sites.


Asunto(s)
Cromosomas Bacterianos/química , Transferencia de Gen Horizontal , Genes Bacterianos , Islas Genómicas , Staphylococcus aureus/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Profagos/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/transmisión , Fagos de Staphylococcus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Virulencia
5.
Mol Cell ; 53(6): 929-40, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24656130

RESUMEN

Staphylococcus aureus virulence is regulated when secreted autoinducing peptides (AIPs) are recognized by a membrane-bound receptor histidine kinase (RHK), AgrC. Some AIPs are agonists of virulence gene expression, while others are antagonists. It is unclear how AIP binding regulates AgrC activity. Here, we reconstitute an AgrC family member, AgrC-I, using nanometer-scale lipid bilayer discs. We show that AgrC-I requires membranes rich in anionic lipids to function. The agonist, AIP-I, binds AgrC-I noncooperatively in a 2:2 stoichiometry, while an antagonist ligand, AIP-II, functions as an inverse agonist of the kinase activity. We also demonstrate the kinase and sensor domains in AgrC are connected by a helical linker whose conformational state exercises rheostat-like control over the kinase activity. Binding of agonist or inverse-agonist peptides results in twisting of the linker in different directions. These two observations provide a view of the molecular motions triggered by ligand binding in an intact membrane-bound RHK.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Membrana Dobles de Lípidos/química , Péptidos Cíclicos/genética , Proteínas Quinasas/genética , Transducción de Señal , Staphylococcus aureus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Ligandos , Modelos Biológicos , Datos de Secuencia Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Fosfolípidos/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Virulencia
6.
Trends Genet ; 32(2): 114-126, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744223

RESUMEN

Among the prokaryotic genomic islands (GIs) involved in horizontal gene transfer (HGT) are the classical pathogenicity islands, including the integrative and conjugative elements (ICEs), the gene-transfer agents (GTAs), and the staphylococcal pathogenicity islands (SaPIs), the primary focus of this review. While the ICEs and GTAs mediate HGT autonomously, the SaPIs are dependent on specific phages. The ICEs transfer primarily their own DNA, the GTAs exclusively transfer unlinked host DNA, and the SaPIs combine the capabilities of both. Thus the SaPIs derive their importance from the genes they carry (their genetic cargo) and the genes they move. They act not only as versatile high-frequency mobilizers but also as mediators of phage interference and consequently are major benefactors of their host bacteria.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Islas Genómicas/genética , Bacteriófagos/genética , Staphylococcus/genética
7.
Proc Natl Acad Sci U S A ; 112(34): 10679-84, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261307

RESUMEN

Staphylococci produce autoinducing peptides (AIPs) as quorum-sensing signals that regulate virulence. These AIPs feature a thiolactone macrocycle that connects the peptide C terminus to the side chain of an internal cysteine. AIPs are processed from ribosomally synthesized precursors [accessory gene regulator D (AgrD)] through two proteolytic events. Formation of the thiolactone is coupled to the first of these and involves the activity of the integral membrane protease AgrB. This step is expected to be thermodynamically unfavorable, and therefore, it is unclear how AIP-producing bacteria produce sufficient amounts of the thiolactone-containing intermediate to drive quorum sensing. Herein, we present the in vitro reconstitution of the AgrB-dependent proteolysis of an AgrD precursor from Staphylococcus aureus. Our data show that efficient thiolactone production is driven by two unanticipated features of the system: (i) membrane association of the thiolactone-containing intermediate, which stabilizes the macrocycle, and (ii) rapid degradation of the C-terminal proteolysis fragment AgrD(C), which affects the reaction equilibrium position. Cell-based studies confirm the intimate link between AIP production and intracellular AgrD(C) levels. Thus, our studies explain the chemical principles that drive AIP production, including uncovering a hitherto unknown link between quorum sensing and peptide turnover.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Péptidos Cíclicos/biosíntesis , Percepción de Quorum/fisiología , Staphylococcus aureus/metabolismo , Virulencia/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Sistema Libre de Células , Regulación Bacteriana de la Expresión Génica , Péptidos Cíclicos/genética , Péptidos Cíclicos/fisiología , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteolípidos , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Termodinámica
8.
PLoS Genet ; 11(10): e1005609, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26495848

RESUMEN

Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts.


Asunto(s)
Bacteriófagos/genética , Evolución Biológica , Virus Helper/genética , Virus Satélites/genética , Replicación del ADN/genética , Islas Genómicas/genética , Filogenia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Proteínas Virales/genética
9.
Proc Natl Acad Sci U S A ; 111(40): 14536-41, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246539

RESUMEN

Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.


Asunto(s)
Islas Genómicas/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Transcripción Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriólisis/genética , Interacciones Huésped-Patógeno/genética , Datos de Secuencia Molecular , Mutación , Plásmidos/genética , Plásmidos/metabolismo , Homología de Secuencia de Aminoácido , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Superantígenos/genética , Ensayo de Placa Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia/genética , Replicación Viral/genética
10.
Proc Natl Acad Sci U S A ; 111(16): 6016-21, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711396

RESUMEN

Staphylococcal pathogenicity islands (SaPIs) are the prototypical members of a widespread family of chromosomally located mobile genetic elements that contribute substantially to intra- and interspecies gene transfer, host adaptation, and virulence. The key feature of their mobility is the induction of SaPI excision and replication by certain helper phages and their efficient encapsidation into phage-like infectious particles. Most SaPIs use the headful packaging mechanism and encode small terminase subunit (TerS) homologs that recognize the SaPI-specific pac site and determine SaPI packaging specificity. Several of the known SaPIs do not encode a recognizable TerS homolog but are nevertheless packaged efficiently by helper phages and transferred at high frequencies. In this report, we have characterized one of the non-terS-coding SaPIs, SaPIbov5, and found that it uses two different, undescribed packaging strategies. SaPIbov5 is packaged in full-sized phage-like particles either by typical pac-type helper phages, or by cos-type phages--i.e., it has both pac and cos sites--a configuration that has not hitherto been described for any mobile element, phages included--and uses the two different phage-coded TerSs. To our knowledge, this is the first example of SaPI packaging by a cos phage, and in this, it resembles the P4 plasmid of Escherichia coli. Cos-site packaging in Staphylococcus aureus is additionally unique in that it requires the HNH nuclease, carried only by cos phages, in addition to the large terminase subunit, for cos-site cleavage and melting.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Empaquetamiento del ADN , Endonucleasas/metabolismo , Islas Genómicas/genética , Fagos de Staphylococcus/enzimología , Staphylococcus/genética , Staphylococcus/virología , Replicación del ADN , Mutación/genética , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestructura , Proteínas Virales/metabolismo , Ensamble de Virus
11.
Nature ; 465(7299): 779-82, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20473284

RESUMEN

Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of approximately 15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl-DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80alpha and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.


Asunto(s)
Islas Genómicas/genética , Virus Helper/enzimología , Proteínas Represoras/antagonistas & inhibidores , Fagos de Staphylococcus/enzimología , Staphylococcus aureus/genética , Regulación hacia Arriba/genética , Proteínas Virales/metabolismo , Alelos , Secuencia de Aminoácidos , ADN/biosíntesis , ADN/genética , Replicación del ADN , Virus Helper/genética , Virus Helper/metabolismo , Virus Helper/fisiología , Lisogenia/fisiología , Datos de Secuencia Molecular , Profagos/metabolismo , Profagos/fisiología , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Recombinación Genética/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Choque Séptico , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Superantígenos/genética , Proteínas Virales/química , Proteínas Virales/genética
12.
Chembiochem ; 16(7): 1093-100, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25801678

RESUMEN

The agr locus in the commensal human pathogen, Staphylococcus aureus, is a two-promoter regulon with allelic variability that produces a quorum-sensing circuit involved in regulating virulence within the bacterium. Secretion of unique autoinducing peptides (AIPs) and detection of their concentrations by AgrC, a transmembrane receptor histidine kinase, coordinates local bacterial population density with global changes in gene expression. The finding that staphylococcal virulence can be inhibited through antagonism of this quorum-sensing pathway has fueled tremendous interest in understanding the structure-activity relationships underlying the AIP-AgrC interaction. The defining structural feature of the AIP is a 16-membered, thiolactone-containing macrocycle. Surprisingly, the importance of ring size on agr activation or inhibition has not been explored. In this study, we address this deficiency through the synthesis and functional analysis of AIP analogues featuring enlarged and reduced macrocycles. Notably, this study is the first to interrogate AIP function by using both established cell-based reporter gene assays and newly developed in vitro AgrC-I binding and autophosphorylation activity assays. Based on our data, we present a model for robust agr activation involving a cooperative, three-points-of-contact interaction between the AIP macrocycle and AgrC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Compuestos Macrocíclicos/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Proteínas Quinasas/metabolismo , Staphylococcus aureus/enzimología , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Péptidos Cíclicos/síntesis química , Relación Estructura-Actividad
13.
Plasmid ; 79: 8-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25659529

RESUMEN

Staphylococcus aureus is one of the most successful bacterial pathogens, harboring a vast repertoire of virulence factors in its arsenal. As such, the genetic manipulation of S. aureus chromosomal DNA is an important tool for the study of genes involved in virulence and survival in the host. Previously reported allelic exchange vectors for S. aureus are shuttle vectors that can be propagated in Escherichia coli, so that standard genetic manipulations can be carried out. Most of the vectors currently in use carry the temperature-sensitive replicon (pE194ts) that was originally developed for use in Bacillus subtilis. Here we show that in S. aureus, the thermosensitivity of a pE194ts vector is incomplete at standard non-permissive temperatures (42 °C), and replication of the plasmid is impaired but not abolished. We report rpsL-based counterselection vectors, with an improved temperature-sensitive replicon (pT181 repC3) that is completely blocked for replication in S. aureus at non-permissive and standard growth temperature (37 °C). We also describe a set of temperature-sensitive vectors that can be cured at standard growth temperature. These vectors provide highly effective tools for rapidly generating allelic replacement mutations and curing expression plasmids, and expand the genetic tool set available for the study of S. aureus.


Asunto(s)
Proteínas Bacterianas/genética , Ingeniería Genética/métodos , Vectores Genéticos , Staphylococcus aureus/genética , Alelos , Clonación Molecular , ADN Bacteriano/genética , Proteínas de Escherichia coli , Calor , Plásmidos/genética , Replicón , Proteína Ribosómica S9
14.
Nucleic Acids Res ; 41(15): 7260-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23771138

RESUMEN

The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.


Asunto(s)
Enterococcus faecalis/virología , Siphoviridae/fisiología , Activación Transcripcional , Ensamble de Virus , Liberación del Virus , Secuencia de Bases , Eliminación de Gen , Regulación Viral de la Expresión Génica , Genoma Viral , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Operón , Regiones Promotoras Genéticas , Profagos/genética , Profagos/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Siphoviridae/genética , Siphoviridae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(40): 16300-5, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22991467

RESUMEN

Staphylococcal pathogenicity islands (SaPIs) carry superantigen and resistance genes and are extremely widespread in Staphylococcus aureus and in other Gram-positive bacteria. SaPIs represent a major source of intrageneric horizontal gene transfer and a stealth conduit for intergeneric gene transfer; they are phage satellites that exploit the life cycle of their temperate helper phages with elegant precision to enable their rapid replication and promiscuous spread. SaPIs also interfere with helper phage reproduction, blocking plaque formation, sharply reducing burst size and enhancing the survival of host cells following phage infection. Here, we show that SaPIs use several different strategies for phage interference, presumably the result of convergent evolution. One strategy, not described previously in the bacteriophage microcosm, involves a SaPI-encoded protein that directly and specifically interferes with phage DNA packaging by blocking the phage terminase small subunit. Another strategy involves interference with phage reproduction by diversion of the vast majority of virion proteins to the formation of SaPI-specific small infectious particles. Several SaPIs use both of these strategies, and at least one uses neither but possesses a third. Our studies illuminate a key feature of the evolutionary strategy of these mobile genetic elements, in addition to their carriage of important genes-interference with helper phage reproduction, which could ensure their transferability and long-term persistence.


Asunto(s)
Antibiosis/genética , Transferencia de Gen Horizontal/genética , Islas Genómicas/genética , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/genética , Replicación Viral/fisiología , Clonación Molecular , Escherichia coli , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Técnicas del Sistema de Dos Híbridos , Ensayo de Placa Viral
16.
Plasmid ; 76: 1-7, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25192956

RESUMEN

We have previously reported the construction of Staphylococcus aureus integration vectors based on the staphylococcal pathogenicity island 1 (SaPI1) site-specific recombination system. These are shuttle vectors that can be propagated in Escherichia coli, which allows for standard DNA manipulations. In S. aureus, these vectors are temperature-sensitive and can only be maintained at non-permissive (42 °C) temperatures by integrating into the chromosome. However, most S. aureus strains are sensitive to prolonged incubations at higher temperatures and will rapidly accumulate mutations, making the use of temperature-sensitive integration vectors impractical for single-copy applications. Here we describe improved versions of these vectors, which are maintained only in single-copy at the SaPI1 attachment site. In addition, we introduce several additional cassettes containing resistance markers, expanding the versatility of integrant selection, especially in strains that are resistant to multiple antibiotics.


Asunto(s)
Vectores Genéticos , Islas Genómicas/genética , Staphylococcus aureus/genética , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Plásmidos/genética
17.
Cell Microbiol ; 15(6): 891-909, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23217115

RESUMEN

Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.


Asunto(s)
Absceso/patología , Interacciones Huésped-Patógeno/fisiología , Microscopía/métodos , Fotones , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus aureus/fisiología , Absceso/fisiopatología , Animales , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/fisiología , Neutrófilos/patología , Neutrófilos/fisiología , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiología , Transducción de Señal/fisiología , Piel/microbiología , Piel/patología , Piel/fisiopatología , Infecciones Cutáneas Estafilocócicas/fisiopatología , Staphylococcus aureus/patogenicidad
18.
Mol Microbiol ; 83(2): 423-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22142035

RESUMEN

Bloodstream infection with Staphylococcus aureus is common and can be fatal. However, virulence factors that contribute to lethality in S. aureus bloodstream infection are poorly defined. We discovered that LukED, a commonly overlooked leucotoxin, is critical for S. aureus bloodstream infection in mice. We also determined that LukED promotes S. aureus replication in vivo by directly killing phagocytes recruited to sites of haematogenously seeded tissue. Furthermore, we established that murine neutrophils are the primary target of LukED, as the greater virulence of wild-type S. aureus compared with a lukED mutant was abrogated by depleting neutrophils. The in vivo toxicity of LukED towards murine phagocytes is unique among S. aureus leucotoxins, implying its crucial role in pathogenesis. Moreover, the tropism of LukED for murine phagocytes highlights the utility of murine models to study LukED pathobiology, including development and testing of strategies to inhibit toxin activity and control bacterial infection.


Asunto(s)
Bacteriemia/microbiología , Proteínas Bacterianas/metabolismo , Exotoxinas/metabolismo , Neutrófilos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Animales , Bacteriemia/mortalidad , Proteínas Bacterianas/genética , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Exotoxinas/genética , Eliminación de Gen , Ratones , Neutrófilos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Infecciones Estafilocócicas/mortalidad , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Análisis de Supervivencia , Factores de Virulencia/genética
19.
Mol Microbiol ; 85(5): 833-45, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22742067

RESUMEN

Staphylococcus aureus pathogenicity islands (SaPIs) are a group of related 15-17 kb mobile genetic elements that commonly carry genes for superantigen toxins and other virulence factors. The key feature of their mobility is the induction of SaPI excision and replication by certain phages and their efficient encapsidation into specific small-headed phage-like infectious particles. Previous work demonstrated that chromosomal integration depends on the SaPI-encoded recombinase, Int. However, although involved in the process, Int alone was not sufficient to mediate efficient SaPI excision from chromosomal sites, and we expected that SaPI excision would involve an Xis function, which could be encoded by a helper phage or by the SaPI, itself. Here we report that the latter is the case. In vivo recombination assays with plasmids in Escherichia coli demonstrate that SaPI-coded Xis is absolutely required for recombination between the SaPI att(L) and att(R) sites, and that both sites, as well as their flanking SaPI sequences, are required for SaPI excision. Mutational analysis reveals that Xis is essential for efficient horizontal SaPI transfer to a recipient strain. Finally, we show that the master regulator of the SaPI life cycle, Stl, blocks expression of int and xis by binding to inverted repeats present in the promoter region, thus controlling SaPI excision.


Asunto(s)
Islas Genómicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Análisis Mutacional de ADN , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética/genética , Staphylococcus aureus/metabolismo
20.
Nucleic Acids Res ; 39(14): 5866-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21450808

RESUMEN

Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls expression of the morphogenetic and lysis modules of the phage, activating their transcription. As expected, rinA deletion eliminated formation of functional phage particles and significantly decreased the transfer of phage and pathogenicity island encoded virulence factors. A genetic analysis of the late promoter region showed that a fragment of 272 bp contains both the promoter and the region necessary for activation by RinA. In addition, we demonstrated that RinA is the only phage-encoded protein required for the activation of this promoter region. This region was shown to be divergent among different phages. Consequently, phages with divergent promoter regions carried allelic variants of the RinA protein, which specifically recognize its own promoter sequence. Finally, most Gram-postive bacteria carry bacteriophages encoding RinA homologue proteins. Characterization of several of these proteins demonstrated that control by RinA of the phage-mediated packaging and transfer of virulence factor is a conserved mechanism regulating horizontal gene transfer.


Asunto(s)
Regulación Viral de la Expresión Génica , Transferencia de Gen Horizontal , Fagos de Staphylococcus/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Ensamble de Virus/genética , Islas Genómicas , Bacterias Grampositivas/patogenicidad , Bacterias Grampositivas/virología , Lisogenia/genética , Operón , Regiones Promotoras Genéticas , Eliminación de Secuencia , Transactivadores/genética , Factores de Transcripción/genética , Activación Transcripcional , Proteínas Virales/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA