RESUMEN
The circadian clock is one of the most important homeostatic systems regulating the majority of physiological functions. Its proper development contributes significantly to the maintenance of health in adulthood. Methadone is recommended for the treatment of opioid use disorders during pregnancy, increasing the number of children prenatally exposed to long-acting opioids. Although early-life opioid exposure has been studied for a number of behavioral and physiological changes observed later in life, information on the relationship between the effects of methadone exposure and circadian system development is lacking. Using a rat model, we investigated the effects of prenatal and early postnatal methadone administration on the maturation of the circadian clockwork in the suprachiasmatic nucleus (SCN) and liver, the rhythm of aralkylamine N-acetyltransferase (AA-NAT) activity in the pineal gland, and gene expression in the livers of 20-day-old rats. Our data show that repeated administration of methadone to pregnant and lactating mothers has significant effect on rhythmic gene expression in the SCN and livers and on the rhythm of AA-NAT in the offspring. Similar to previous studies with morphine, the rhythm amplitudes of the clock genes in the SCN and liver were unchanged or enhanced. However, six of seven specific genes in the liver showed significant downregulation of their expression, compared to the controls in at least one experimental group. Importantly, the amplitude of the AA-NAT rhythm was significantly reduced in all methadone-treated groups. As there is a strong correlation with melatonin levels, this result could be of importance for clinical practice.
Asunto(s)
Melatonina , Glándula Pineal , Embarazo , Femenino , Ratas , Animales , Metadona/metabolismo , Metadona/farmacología , Lactancia , Ritmo Circadiano/fisiología , Glándula Pineal/metabolismo , Melatonina/farmacología , Núcleo Supraquiasmático/fisiologíaRESUMEN
Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.
Asunto(s)
Envejecimiento/genética , Antígenos/genética , Memoria Inmunológica/genética , Linfocitos T/inmunología , Envejecimiento/inmunología , Animales , Antígenos/inmunología , Evolución Clonal , Inestabilidad Genómica , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , FenotipoRESUMEN
Activation of microglia is considered the most important component of neuroinflammation. Microglia can adopt a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Opioid receptors (ORs) have been shown to control neurotransmission of various peptidergic neurons, but their potential role in regulating microglial function is largely unknown. Here, we aimed to investigate the effect of the OR agonists DAMGO, DADLE and U-50488 on the polarization of C8-B4 microglial cells. We observed that opioids suppressed lipopolysaccharide (LPS)-triggered M1 polarization and promoted M2 polarization. This was reflected in lower phagocytic activity, lower production of NO, lower expression of TNF-α, IL-1ß, IL-6, IL-86 and IL-12 beta p40 together with higher migration rate, and increased expression of IL-4, IL-10, arginase 1 and CD 206 in microglia, compared to cells affected by LPS. We demonstrated that the effect of opioids on microglial polarization is mediated by the TREM2/NF-κB signaling pathway. These results provide new insights into the anti-inflammatory and neuroprotective effects of opioids and highlight their potential in combating neurodegenerative diseases.
Asunto(s)
Lipopolisacáridos , Microglía , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides/uso terapéuticoRESUMEN
Opioids are known to have antioxidant effects and to modulate microglial function under certain conditions. It has been previously shown that opioid ligands can effectively inhibit the release of proinflammatory cytokines when stimulated with lipopolysaccharide (LPS) and convert microglia to an anti-inflammatory polarization state. Here, we used C8-B4 cells, the mouse microglial cell line activated by LPS as a model to investigate the anti-inflammatory/antioxidant potential of selected opioid receptor agonists (DAMGO, DADLE, and U-50488). We found that all of these ligands could exert cytoprotective effects through the mechanism affecting LPS-induced ROS production, NADPH synthesis, and glucose uptake. Interestingly, opioids elevated the level of reduced glutathione, increased ATP content, and enhanced mitochondrial respiration in microglial cells exposed to LPS. These beneficial effects were associated with the upregulation of the Nrf2/HO-1 pathway. The present results indicate that activation of opioid signaling supports the preservation of mitochondrial function with concomitant elimination of ROS in microglia and suggest that an Nrf2/HO-1 signaling pathway-dependent mechanism is involved in the antioxidant efficacy of opioids. Opioid receptor agonists may therefore be considered as agents to suppress oxidative stress and inflammatory responses of microglia.
Asunto(s)
Lipopolisacáridos , Microglía , Ratones , Animales , Microglía/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ligandos , Estrés Oxidativo , Antiinflamatorios/farmacología , Receptores Opioides/metabolismoRESUMEN
The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .
Asunto(s)
Exosomas/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Fibroblastos/patología , Humanos , Melanoma Experimental/patología , Células Tumorales CultivadasRESUMEN
Members of the genus Cronobacter are responsible for severe infections in infants and immunosuppressed individuals. Although several virulence factors have been described, many proteins involved in the pathogenesis of such infections have not yet been mapped. This study is the first to fractionate Cronobacter sakazakii cells into outer membrane, inner membrane, periplasmic, and cytosolic fractions as the basis for improved proteome mapping. A novel method was designed to prepare the fractionated samples for protein identification. The identification was performed via one-dimensional electrophoresis-liquid chromatography electrospray ionization tandem mass spectrometry. To determine the subcellular localization of the identified proteins, we developed a novel Python-based script (Subcelloc) that combines three web-based tools, PSORTb 3.0.2, CELLO 2.5, and UniProtKB. Applying this approach enabled us to identify 1,243 C. sakazakii proteins, which constitutes 28% of all predicted proteins and 49% of all theoretically expressed outer membrane proteins. These results represent a significant improvement on previous attempts to map the C. sakazakii proteome and could provide a major step forward in the identification of Cronobacter virulence factors. IMPORTANCECronobacter spp. are opportunistic pathogens that can cause rare and, in many cases, life-threatening infections, such as meningitis, necrotizing enterocolitis, and sepsis. Such infections are mainly linked to the consumption of contaminated powdered infant formula, with Cronobacter sakazakii clonal complex 4 considered the most frequent agent of serious neonatal infection. However, the pathogenesis of diseases caused by these bacteria remains unclear; in particular, the proteins involved throughout the process have not yet been mapped. To help address this, we present an improved method for proteome mapping that emphasizes the isolation and identification of membrane proteins. Specific focus was placed on the identification of the outer membrane proteins, which, being exposed to the surface of the bacterium, directly participate in host-pathogen interaction.
Asunto(s)
Cronobacter sakazakii , Cronobacter , Proteínas de la Membrana Bacteriana Externa/metabolismo , Microbiología de Alimentos , Humanos , Lactante , Fórmulas Infantiles/microbiología , Recién Nacido , Proteoma/metabolismo , Proteómica , Factores de Virulencia/metabolismoRESUMEN
Amino acid tryptophan is catabolised via the kynurenine and serotonin-melatonin pathways, leading to various biologically active metabolites involved in regulating immunity, metabolism, and neuronal function. The levels of these metabolites are determined by the enzymes, which respond to altered homeostasis and pathological processes in the body. For the pineal gland, most work has centred on the serotonin-melatonin pathway. Still, no information exists on the expression of kynurenine pathway enzymes (KPEs), which may compete for the same substrate. Therefore, in this study, we investigated the physiological expression of KPEs in the rat pineal gland and their alterations in response to acute inflammation. We further compared the pineal expression profiles with the KPE expression in the rat liver and heart. Our data indicate the basal, non-induced expression of KPEs in the pineal gland, liver, and hearts, with a few first-step enzyme exceptions, such as Tdo and Ido1, and the first-step enzyme of serotonin pathway Tph1. This physiological expression was regulated in a circadian manner in the pineal gland and liver but not in the heart. Peripheral treatment with lipopolysaccharide resulted in mild upregulation of Tph1 in the pineal gland and heart, more robust upregulation of KPEs in the pineal gland and heart, but downregulation of Kmo, KatII, and Kynu in the liver. Altogether, our data provide evidence on the physiological expression of KPEs in the pineal gland, liver, and heart, which is regulated by the circadian clock in a tissue-specific manner. Furthermore, we show the temporal dynamics and bidirectional change in the transcriptional patterns of KPEs, Tph1, Per2, Nr1d1, and Stat3 in response to systemic administration of lipopolysaccharide in these tissues.
Asunto(s)
Melatonina , Glándula Pineal , Animales , Ritmo Circadiano , Quinurenina , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Glándula Pineal/metabolismo , Ratas , Serotonina/metabolismoRESUMEN
Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.
Asunto(s)
Hipertensión/complicaciones , Daño por Reperfusión Miocárdica/prevención & control , Taquicardia Ventricular/etiología , Fibrilación Ventricular/etiología , Potenciales de Acción , Animales , Presión Sanguínea , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Ratas Endogámicas SHR , Ratas Transgénicas , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/fisiopatologíaRESUMEN
Social defeat stress affects behavior and changes the expression of the genes underlying neuronal plasticity in the brain. The circadian clock regulates most neuronal processes in the brain, which results in daily variations of complex behavior, and any disturbance in circadian clock oscillations increases the risk of mood and cognitive disbalance. In this study, we assessed the effect of acute and repeated social defeat stress on Per2 and Nr1d1 expression in prefrontal cortexes, hippocampi, pineal glands, olfactory bulbs, cerebella, and pituitary glands. We also evaluated the effect of our experimental setting on levels of Bdnf and plasma corticosterone, two markers widely used to asses the impact of stress on mammalian physiology. Our data show that single and repeated social defeat stress upregulates the expression of both clock genes and Bdnf in all brain structures, and corticosterone in the blood. While the general pattern of Bdnf upregulation suggests higher sensitivity in the intruder group, the clock genes are induced more significantly in residents, especially by repeated stress sessions. Our work thus suggests that the model of stress-induced anxiety and depression should consider a group of residents because, for some parameters, they may respond more distinctively than intruders.LAY SUMMARYThe resident/intruder experimental paradigm affects the expression of clock genes Per2, Nr1d1and Bdnf in the brain structures and plasma corticosterone level. The induction of clock genes is evident in both experimental groups; however, it is more marked in residents. Together with the significant increase in Bdnf levels in the majority of brain structures and plasma corticosterone in residents, our data suggest that in the model of social defeat stress, the utility of an experimental group of residents could be contributive.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteínas CLOCK , Estrés Psicológico , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Corticosterona , Ratas Wistar , Conducta Social , Derrota Social , Estrés Psicológico/genéticaRESUMEN
OBJECTIVE: We examined if renal denervation (RDN) attenuates the progression of aortocaval fistula (ACF)-induced heart failure or improves renal hemodynamics in Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension. METHODS: Bilateral RDN was performed 1 week after creation of ACF. The animals studied were ACF TGR and sham-operated controls, and both groups were subjected to RDN or sham denervation. In separate groups, renal artery blood flow (RBF) responses were determined to intrarenal ANG II (2 and 8 ng), norepinephrine (NE) (20 and 40 ng) and acetylcholine (Ach) (10 and 40 ng) 3 weeks after ACF creation. RESULTS: In nondenervated ACF TGR, the final survival rate was 10 versus 50% in RDN rats. RBF was significantly lower in ACF TGR than in sham-operated TGR (6.2 ± 0.3 vs. 9.7 ± 0.5 mL min-1 g-1, p < 0.05), the levels unaffected by RDN. Both doses of ANG II decreased RBF more in ACF TGR than in sham-operated TGR (-19 ± 3 vs. -9 ± 2% and -47 ± 3 vs. -22 ± 2%, p < 0.05 in both cases). RDN did not alter RBF responses to the lower dose, but increased it to the higher dose of ANG II in sham-operated as well as in ACF TGR. NE comparably decreased RBF in ACF TGR and sham-operated TGR, and RDN increased RBF responsiveness. Intrarenal Ach increased RBF significantly more in ACF TGR than in sham-operated TGR (29 ± 3 vs. 17 ± 3%, p < 0.05), the changes unaffected by RDN. ACF creation induced marked bilateral cardiac hypertrophy and lung congestion, both attenuated by RDN. In sham-operated but not in ACF TGR, RDN significantly decreased mean arterial pressure. CONCLUSION: The results show that RDN significantly improved survival rate in ACF TGR; however, this beneficial effect was not associated with improvement of reduced RBF or with attenuation of exaggerated renal vascular responsiveness to ANG II.
Asunto(s)
Angiotensina II/metabolismo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/terapia , Hipertensión/complicaciones , Riñón/inervación , Renina/genética , Simpatectomía , Animales , Fístula Arteriovenosa/complicaciones , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Riñón/cirugía , Ratas , Ratas Sprague-Dawley , Ratas TransgénicasRESUMEN
BACKGROUND: Early-life stress in the form of maternal separation can be associated with alterations in offspring neurodevelopment and brain functioning. Here, we aimed to investigate the potential impact of prolonged maternal separation on proteomic profiling of prefrontal cortex, hippocampus and cerebellum of juvenile and young adult rats. A special attention was devoted to proteins involved in the process of cell death and redox state maintenance. METHODS: Long-Evans pups were separated from their mothers for 3 h daily over the first 3 weeks of life (during days 2-21 of age). Brain tissue samples collected from juvenile (22-day-old) and young adult (90-day-old) rats were used for label-free quantitative (LFQ) proteomic analysis. In parallel, selected oxidative stress markers and apoptosis-related proteins were assessed biochemically and by Western blot, respectively. RESULTS: In total, 5526 proteins were detected in our proteomic analysis of rat brain tissue. Approximately one tenth of them (586 proteins) represented those involved in cell death processes or regulation of oxidative stress balance. Prolonged maternal separation caused changes in less than half of these proteins (271). The observed alterations in protein expression levels were age-, sex- and brain region-dependent. Interestingly, the proteins detected by mass spectrometry that are known to be involved in the maintenance of redox state were not markedly altered. Accordingly, we did not observe any significant differences between selected oxidative stress markers, such as the levels of hydrogen peroxide, reduced glutathione, protein carbonylation and lipid peroxidation in brain samples from rats that underwent maternal separation and from the corresponding controls. On the other hand, a number of changes were found in cell death-associated proteins, mainly in those involved in the apoptotic and autophagic pathways. However, there were no detectable alterations in the levels of cleaved products of caspases or Bcl-2 family members. Taken together, these data indicate that the apoptotic and autophagic cell death pathways were not activated by maternal separation either in adolescent or young adult rats. CONCLUSION: Prolonged maternal separation can distinctly modulate expression profiles of proteins associated with cell death pathways in prefrontal cortex, hippocampus and cerebellum of juvenile rats and the consequences of early-life stress may last into adulthood and likely participate in variations in stress reactivity.
Asunto(s)
Encéfalo/fisiopatología , Muerte Celular , Privación Materna , Proteoma , Animales , Animales Recién Nacidos , Femenino , Masculino , Proteómica , Ratas , Ratas Long-EvansRESUMEN
Ancient mitochondrial DNA is used for tracing human past demographic events due to its population-level variability. The number of published ancient mitochondrial genomes has increased in recent years, alongside with the development of high-throughput sequencing and capture enrichment methods. Here, we present AmtDB, the first database of ancient human mitochondrial genomes. Release version contains 1107 hand-curated ancient samples, freely accessible for download, together with the individual descriptors, including geographic location, radiocarbon dating, and archaeological culture affiliation. The database also features an interactive map for sample location visualization. AmtDB is a key platform for ancient population genetic studies and is available at https://amtdb.org.
Asunto(s)
Bases de Datos Genéticas , Genoma Mitocondrial , Genómica , Genómica/métodos , Humanos , Mitocondrias/genética , Navegador WebRESUMEN
In this Letter we discuss new soft theorems for the Goldstone-boson amplitudes with nonvanishing soft limits. The standard argument is that the nonlinearly realized shift symmetry leads to the vanishing of scattering amplitudes in the soft limit, known as the Adler zero. This statement involves certain assumptions of the absence of cubic vertices and the absence of linear terms in the transformations of fields. For theories which fail to satisfy these conditions, we derive a new soft theorem which involves certain linear combinations of lower point amplitudes, generalizing the Adler zero statement. We provide an explicit example of the SU(N)/SU(N-1) sigma model which was also recently studied in the context of U(1) fibrated models. The soft theorem can be then used as an input into the modified soft recursion relations for the reconstruction of all tree-level amplitudes.
RESUMEN
The receptor channel transient receptor potential vanilloid 1 (TRPV1) functions as a sensor of noxious heat and various chemicals. There is increasing evidence for a crosstalk between TRPV1 and opioid receptors. Here we investigated the effect of the prototypical TRPV1 agonist capsaicin and selected opioid ligands on TRPV1 movement in the plasma membrane and intracellular calcium levels in HEK293 cells expressing TRPV1 tagged with cyan fluorescent protein (CFP). We observed that lateral mobility of TRPV1 increased after treatment of cells with capsaicin or naloxone (a nonselective opioid receptor antagonist) but not with DAMGO (a µ-opioid receptor agonist). Interestingly, both capsaicin and naloxone, unlike DAMGO, elicited intracellular calcium responses. The increased TRPV1 movement and calcium influx induced by capsaicin and naloxone were blocked by the TRPV1 antagonist capsazepine. The ability of naloxone to directly interact with TRPV1 was further corroborated by [3H]-naloxone binding. In conclusion, our data suggest that besides acting as an opioid receptor antagonist, naloxone may function as a potential TRPV1 agonist.
Asunto(s)
Capsaicina/farmacología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Canales Catiónicos TRPV/agonistas , Calcio/metabolismo , Capsaicina/análogos & derivados , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ligandos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismoRESUMEN
The interactions between TRPV1 and µ-opioid receptors (MOR) have recently attracted much attention because these two receptors play important roles in pain pathways and can apparently modulate each other's functioning. However, the knowledge about signaling interactions and crosstalk between these two receptors is still limited. In this study, we investigated the mutual interactions between MOR and TRPV1 shortly after their activation in HEK293 cells expressing these two receptors. After activation of one receptor we observed significant changes in the other receptor's lateral mobility and vice versa. However, the changes in receptor movement within the plasma membrane were not connected with activation of the other receptor. We also observed that plasma membrane ß-arrestin 2 levels were altered after treatment with agonists of both these receptors. Knockdown of ß-arrestin 2 blocked all changes in the lateral mobility of both receptors. Furthermore, we found that ß-arrestin 2 can play an important role in modulating the effectiveness of ERK1/2 phosphorylation after activation of MOR in the presence of TRPV1. These data suggest that ß-arrestin 2 and ERK1/2 are important mediators between these two receptors and their signaling pathways. Collectively, MOR and TRPV1 can mutually affect each other's behavior and ß-arrestin 2 apparently plays a key role in the bidirectional crosstalk between these two receptors in the plasma membrane.
Asunto(s)
Membrana Celular/metabolismo , Receptores Opioides mu/metabolismo , Canales Catiónicos TRPV/metabolismo , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Membrana Celular/fisiología , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Morfina/metabolismo , Fosforilación , Receptores Opioides/metabolismo , Receptores Opioides mu/fisiología , Transducción de Señal , Canales Catiónicos TRPV/fisiología , Arrestina beta 2/metabolismo , Arrestina beta 2/fisiología , beta-Arrestinas/metabolismoRESUMEN
Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.
Asunto(s)
Envejecimiento/metabolismo , Infecciones por Coronavirus/metabolismo , Interleucina-6/metabolismo , Neoplasias/metabolismo , Neumonía Viral/metabolismo , Envejecimiento/patología , Animales , COVID-19 , Infecciones por Coronavirus/patología , Humanos , Interleucina-6/genética , Neoplasias/patología , Pandemias , Neumonía Viral/patología , Transducción de SeñalRESUMEN
Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.
Asunto(s)
Genoma Mitocondrial/genética , Hipoxia , Mitocondrias Cardíacas/genética , Miocardio/metabolismo , Transducción de Señal/genética , Adaptación Fisiológica/genética , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hipertensión/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas BN , Ratas Endogámicas SHR , Especificidad de la EspecieRESUMEN
OBJECTIVES: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins. METHODS: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP). RESULTS: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gß, ß-arrestin2 and phospholipase Cß1, but not of Giα1, ß-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and ß-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling. CONCLUSION: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Receptores de Hormona Liberadora de Tirotropina/química , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/química , Sitios de Unión , Membrana Celular/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células HEK293 , Humanos , Ligandos , Midazolam/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Hormona Liberadora de Tirotropina/agonistas , Receptores de Hormona Liberadora de Tirotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Tirotropina/genética , Transducción de Señal/genética , Hormona Liberadora de Tirotropina/química , Hormona Liberadora de Tirotropina/metabolismo , beta-Arrestinas/genéticaRESUMEN
We present a bottom-up construction of vector effective field theories using the infrared structure of scattering amplitudes. Our results employ two distinct probes of soft kinematics: multiple soft limits and single soft limits after dimensional reduction applicable in four and general dimensions, respectively. Both approaches uniquely specify the Born-Infeld (BI) model as the only theory of vectors completely fixed by certain infrared conditions which generalize the Adler zero for pions. These soft properties imply new recursion relations for on-shell scattering amplitudes in BI theory and suggest the existence of a wider class of vector effective field theories.
RESUMEN
Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mtBN strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca2+-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mtBN strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mtBN strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mtBN strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.