Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 142(5): 054303, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25662641

RESUMEN

Peroxyacetyl radical [CH3C(O)O2] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X̃) and first (Ã) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

2.
Biomed Opt Express ; 12(1): 494-508, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33659085

RESUMEN

Camera-based physiological measurement enables vital signs to be captured unobtrusively without contact with the body. Remote, or imaging, photoplethysmography involves recovering peripheral blood flow from subtle variations in video pixel intensities. While the pulse signal might be easy to obtain from high quality uncompressed videos, the signal-to-noise ratio drops dramatically with video bitrate. Uncompressed videos incur large file storage and data transfer costs, making analysis, manipulation and sharing challenging. To help address these challenges, we use compression specific supervised models to mitigate the effect of temporal video compression on heart rate estimates. We perform a systematic evaluation of the performance of state-of-the-art algorithms across different levels, and formats, of compression. We demonstrate that networks trained on compressed videos consistently outperform other benchmark methods, both on stationary videos and videos with significant rigid head motions. By training on videos with the same, or higher compression factor than test videos, we achieve improvements in signal-to-noise ratio (SNR) of up to 3 dB and mean absolute error (MAE) of up to 6 beats per minute (BPM).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA