Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 42(8): 1213-1237, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34749553

RESUMEN

The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.


Asunto(s)
Productos Biológicos , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Biocatálisis , Terpenos
2.
Microb Cell Fact ; 21(1): 197, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123694

RESUMEN

BACKGROUND: CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. RESULTS: Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. CONCLUSIONS: This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains.


Asunto(s)
Diterpenos , Paclitaxel , Alquenos , Ácido Aminolevulínico , Antioxidantes , Hidrocarburos Aromáticos con Puentes , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Compuestos Epoxi , Flavina-Adenina Dinucleótido , Hemina , Hierro , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Taxoides/metabolismo
3.
Biotechnol Bioeng ; 118(1): 279-293, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936453

RESUMEN

Taxadien-5α-hydroxylase and taxadien-5α-ol O-acetyltransferase catalyze the oxidation of taxadiene to taxadien-5α-ol and subsequent acetylation to taxadien-5α-yl-acetate in the biosynthesis of the blockbuster anticancer drug, paclitaxel (Taxol®). Despite decades of research, the promiscuous and multispecific CYP725A4 enzyme remains a major bottleneck in microbial biosynthetic pathway development. In this study, an interdisciplinary approach was applied for the construction and optimization of the early pathway in Saccharomyces cerevisiae, across a range of bioreactor scales. High-throughput microscale optimization enhanced total oxygenated taxane titer to 39.0 ± 5.7 mg/L and total taxane product titers were comparable at micro and minibioreactor scale at 95.4 ± 18.0 and 98.9 mg/L, respectively. The introduction of pH control successfully mitigated a reduction of oxygenated taxane production, enhancing the potential taxadien-5α-ol isomer titer to 19.2 mg/L, comparable with the 23.8 ± 3.7 mg/L achieved at microscale. A combination of bioprocess optimization and increased gas chromatography-mass spectrometry resolution at 1 L bioreactor scale facilitated taxadien-5α-yl-acetate detection with a final titer of 3.7 mg/L. Total oxygenated taxane titers were improved 2.7-fold at this scale to 78 mg/L, the highest reported titer in yeast. Critical parameters affecting the productivity of the engineered strain were identified across a range of scales, providing a foundation for the development of robust integrated bioprocess control systems.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae , Taxoides/metabolismo , Paclitaxel/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
4.
Microb Cell Fact ; 19(1): 200, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138820

RESUMEN

BACKGROUND: Cost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol®), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck. RESULTS: Multi-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at microscale, compared to expressing a single episomal copy of TASY. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively at 20 and 30 °C. Maximum taxadiene titres of 129 ± 15 mg/L and 127 mg/L were achieved through shake flask and bioreactor cultivations, respectively, of the optimal strain at a reduced temperature of 20 °C. CONCLUSIONS: The results of this study highlight the benefit of employing a combination of molecular biology and bioprocess tools during synthetic pathway development, with which TASY activity was successfully improved by 6.5-fold compared to the highest literature titre in S. cerevisiae cell factories.


Asunto(s)
Alquenos/metabolismo , Diterpenos/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Antineoplásicos/metabolismo , Reactores Biológicos , Escherichia coli/metabolismo , Isomerasas/metabolismo , Saccharomyces cerevisiae/genética , Solubilidad , Temperatura
5.
Metab Eng Commun ; 18: e00229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38098801

RESUMEN

Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.

6.
ACS Synth Biol ; 11(8): 2527-2547, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35939789

RESUMEN

As redesigning organisms using engineering principles is one of the purposes of synthetic biology (SynBio), the standardization of experimental methods and DNA parts is becoming increasingly a necessity. The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this area, conceiving several well-characterized SynBio toolkits widely adopted by the community. In this review, the molecular methods and toolkits developed for S. cerevisiae are discussed in terms of their contributions to the required standardization efforts. In addition, the toolkits designed for emerging nonconventional yeast species including Yarrowia lipolytica, Komagataella phaffii, and Kluyveromyces marxianus are also reviewed. Without a doubt, the characterized DNA parts combined with the standardized assembly strategies highlighted in these toolkits have greatly contributed to the rapid development of many metabolic engineering and diagnostics applications among others. Despite the growing capacity in deploying synthetic biology for common yeast genome engineering works, the yeast community has a long journey to go to exploit it in more sophisticated and delicate applications like bioautomation.


Asunto(s)
Biología Sintética , Yarrowia , Ingeniería Metabólica/métodos , Filogenia , Estándares de Referencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética/métodos , Yarrowia/genética , Yarrowia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA