Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Med Mycol ; 58(8): 1085-1090, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277834

RESUMEN

The aim of this study was to evaluate a colorimetric method, MIRONAUT-AM, for determining susceptibility testing of anidulafungin, amphotericin, voriconazole, and itraconazole by comparing the minimum inhibitory (effective) concentrations (MICs/MECs) obtained by this method to those generated by the reference Clinical Laboratory Standard Institute (CLSI) broth microdilution method. In sum, 78 clinical isolates of Aspergillus species, nine of them non-wild type (non-WT) with itraconazole MIC ranging from 2 mg/l to >16 mg/l, were tested against above antifungals. A. fumigatus ATCC 204305 was used as a reference strain, and test was performed in accordance with slightly modified yeast susceptibility testing instruction of the manufacture; conidia suspension inoculum and alamarBlue concentration were optimized. These same isolates were referred to Bristol Mycology reference laboratory and tested by CLSI method. The MICs and MECs generated by the two methods were compared using concordance analysis. MIRONAUT-AM showed significant concordance (P < .0001) with CLSI method, and overall agreement was high (≥90%). In addition, MIRONAUT-AM produced echinocandin MECs results within 18-24 hours incubation time and correctly detected all non-WT isolates except one isolate. This colorimetric method is very promising and appears to be a suitable alternative susceptibility testing method to labor intensive broth microdilution reference method for Aspergillus species.


Asunto(s)
Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Pruebas de Sensibilidad Microbiana/normas , Aspergilosis/microbiología , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , Colorimetría , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados
3.
J Fungi (Basel) ; 9(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37108853

RESUMEN

BACKGROUND: The incidence and outcome of pulmonary aspergillosis in coronavirus disease (COVID-19) patients on extracorporeal membrane oxygenation (ECMO) are unknown and have not been fully addressed. We investigated the incidence, risk factors and outcome of pulmonary aspergillosis in COVID-19 ECMO patients. In addition, the diagnostic utility of bronchoalveolar lavage fluid and CT scans in this setting were assessed. METHODS: We conducted a retrospective study on incidence and outcome of pulmonary aspergillosis in COVID-19 ECMO patients by reviewing clinical, radiological, and mycological evidence. These patients were admitted to a tertiary cardiothoracic centre during the early COVID-19 surge between March 2020 and January 2021. Results and measurements: The study included 88 predominantly male COVID-19 ECMO patients with a median age and a BMI of 48 years and 32 kg/m2, respectively. Pulmonary aspergillosis incidence was 10% and was associated with very high mortality. Patients with an Aspergillus infection were almost eight times more likely to die compared with those without infection in multivariate analysis (OR 7.81, 95% CI: 1.20-50.68). BALF GM correlated well with culture results, with a Kappa value of 0.8 (95% CI: 0.6, 1.0). However, serum galactomannan (GM) and serum (1-3)-ß-D-glucan (BDG) lacked sensitivity. Thoracic computed tomography (CT) diagnostic utility was also inconclusive, showing nonspecific ground glass opacities in almost all patients. CONCLUSIONS: In COVID-19 ECMO patients, pulmonary aspergillosis incidence was 10% and associated with very high mortality. Our results support the role of BALF in the diagnosis of pulmonary aspergillosis in COVID-19 ECMO patients. However, the diagnostic utility of BDG, serum GM, and CT scans is unclear.

4.
J Fungi (Basel) ; 8(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35205942

RESUMEN

Diagnosis of pulmonary aspergillosis (PA), a fungal disease caused by Aspergillus species, is challenging since symptoms are unspecific. The galactomannan (antigen secreted by Aspergillus species) test in bronchoalveolar lavage (BAL) fluid is a valuable diagnostic adjunct test in the diagnosis of PA. However, BAL collection is invasive and may not be suitable to severely ill patients. Sputum is non-invasive, easily collected, and lung specific and may be an alternative to BAL. The aim of this research was to retrospectively evaluate the utility of sputum galactomannan in the diagnosis of pulmonary aspergillosis in patients with chronic respiratory diseases and to estimate the sputum galactomannan cut-off value. We collected data from patients with clinical suspicion of pulmonary aspergillosis who had sputum galactomannan, culture, and Aspergillus IgG tests performed within four weeks. Sputum galactomannan was validated against the clinical diagnosis of aspergillosis, Aspergillus culture, and Aspergillus IgG tests. In total, 218 patients met inclusion criteria. Overall, sputum GM showed satisfactory agreement with clinical diagnosis of aspergillosis, Aspergillus culture, and Aspergillus IgG. When a receiver operating characteristic curve was constructed using Aspergillus culture/IgG and clinical diagnosis, the same cut-off (CO) of 0.71 (AUC: 0.83; CI: 0.69-0.86, p < 0.001) was determined. Against clinical diagnosis, sputum GM gave sensitivity and specificity of 70% and 71%, respectively. Sensitivity of 77% and specificity of 78% were found when sputum GM was evaluated against Aspergillus culture/IgG. In conclusion, this study showed that sputum galactomannan antigen testing has utility in the diagnosis of chronic forms of pulmonary aspergillosis and further prospective validation is indicated.

5.
J Fungi (Basel) ; 8(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448593

RESUMEN

Background: Instances of resistant fungal infection are rising in pulmonary disease, with limited therapeutic options. Therapeutic drug monitoring of azole antifungals has been necessary to ensure safety and efficacy but is considered unnecessary for the newest triazole isavuconazole. Aims: To characterise the prevalence of isavuconazole resistance and use in a tertiary respiratory centre. Methods: A retrospective observational analysis (2016−2021) of adult respiratory patients analysing fungal culture, therapeutic drug monitoring, and outcome post-isavuconazole therapy. Results: During the study period, isavuconazole susceptibility testing was performed on 26 Aspergillus spp. isolates. A total of 80.8% of A. fumigatus isolates had isavuconazole (MIC > 1 mg/L, and 73.0% > 2 mg/L) with a good correlation to voriconazole MIC (r = 0.7, p = 0.0002). A total of 54 patients underwent isavuconazole therapy during the study period (median duration 234 days (IQR: 24−499)). A total of 67% of patients tolerated isavuconazole, despite prior azole toxicity in 61.8%, with increased age (rpb = 0.31; p = 0.021) and male sex (φc = 0.30; p = 0.027) being associated with toxicity. A total of 132 isavuconazole levels were performed with 94.8% > 1 mg/L and 72% > 2 mg/L. Dose change from manufacturer's recommendation was, however, required in 9.3% to achieve a concentration of >2 mg/L. Conclusion: We describe the use of isavuconazole as a salvage therapy in a chronic pulmonary fungal disease setting with a high prevalence of azole resistance. Therapeutic concentrations at standard dosing were high; however, results reinforce antifungal stewardship for optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA