Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 34(11): 4428-4452, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35938694

RESUMEN

Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mamíferos/metabolismo
2.
Plant J ; 114(5): 1014-1036, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36861364

RESUMEN

Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.


Asunto(s)
Coenzimas , Vitaminas , Humanos , Coenzimas/metabolismo , Vitaminas/metabolismo , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas
3.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413850

RESUMEN

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Asunto(s)
Nanopartículas , Solanum lycopersicum , Titanio , Plantones/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
4.
Plant J ; 111(3): 713-730, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644998

RESUMEN

As sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO2 ) levels. Nicotinamide adenine dinucleotide (NAD+ ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO2 fertilization. We report that an efficient subcellular NAD+ distribution is required for the fecundity-promoting effects of elevated CO2 levels. Plants with reduced expression of either mitochondrial (NDT1 or NDT2) or peroxisomal (PXN) NAD+ transporter genes grown under elevated CO2 exhibited reduced total leaf area compared with the wild-type while PXN mutants also displayed reduced leaf number. NDT2 and PXN lines grown under elevated CO2 conditions displayed reduced rosette dry weight and lower photosynthetic rates coupled with reduced stomatal conductance. Interestingly, high CO2 doubled seed production and seed weight in the wild-type, whereas the mutants were less responsive to increases in CO2 levels during reproduction, producing far fewer seeds than the wild-type under both CO2 conditions. These data highlight the importance of mitochondrial and peroxisomal NAD+ uptake mediated by distinct NAD transporter proteins to modulate photosynthesis and seed production under high CO2 levels.


Asunto(s)
Dióxido de Carbono , NAD , Dióxido de Carbono/metabolismo , NAD/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Semillas/metabolismo
5.
Plant J ; 109(1): 196-214, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741366

RESUMEN

The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavoproteínas Transportadoras de Electrones/genética , Germinación , Proteínas Hierro-Azufre/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
Plant Mol Biol ; 112(4-5): 213-223, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351824

RESUMEN

Anthocyanins are a family of water-soluble vacuolar pigments present in almost all flowering plants. The chemistry, biosynthesis and functions of these flavonoids have been intensively studied, in part due to their benefit for human health. Given that they are efficient antioxidants, intense research has been devoted to studying their possible roles against damage caused by reactive oxygen species (ROS). However, the redox homeostasis established between antioxidants and ROS is important for plant growth and development. On the one hand, high levels of ROS can damage DNA, proteins, and lipids, on the other, they are also required for cell signaling, plant development and stress responses. Thus, a balance is needed in which antioxidants can remove excessive ROS, while not precluding ROS from triggering important cellular signaling cascades. In this article, we discuss how anthocyanins and ROS interact and how a deeper understanding of the balance between them could help improve plant productivity, nutritional value, and resistance to stress, while simultaneously maintaining proper cellular function and plant growth.


Asunto(s)
Antocianinas , Antioxidantes , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Antocianinas/metabolismo , Oxidación-Reducción , Desarrollo de la Planta , Estrés Oxidativo
7.
Plant Cell Environ ; 46(12): 3721-3736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615309

RESUMEN

In cellular circumstances where carbohydrates are scarce, plants can use alternative substrates for cellular energetic maintenance. In plants, the main protein reserve is present in the chloroplast, which contains most of the total leaf proteins and represents a rich source of nitrogen and amino acids. Autophagy plays a key role in chloroplast breakdown, a well-recognised symptom of both natural and stress-induced plant senescence. Remarkably, an autophagic-independent route of chloroplast degradation associated with chloroplast vesiculation (CV) gene was previously demonstrated. During extended darkness, CV is highly induced in the absence of autophagy, contributing to the early senescence phenotype of atg mutants. To further investigate the role of CV under dark-induced senescence conditions, mutants with low expression of CV (amircv) and double mutants amircv1xatg5 were characterised. Following darkness treatment, no aberrant phenotypes were observed in amircv single mutants; however, amircv1xatg5 double mutants displayed early senescence and altered dismantling of chloroplast and membrane structures under these conditions. Metabolic characterisation revealed that the functional lack of both CV and autophagy leads to higher impairment of amino acid release and differential organic acid accumulation during starvation conditions. The data obtained are discussed in the context of the role of CV and autophagy, both in terms of cellular metabolism and the regulation of chloroplast degradation.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Carbohidratos , Aminoácidos/metabolismo , Autofagia/fisiología , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Plant Cell ; 32(10): 3324-3345, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32796121

RESUMEN

NADH and NAD+ are a ubiquitous cellular redox couple. Although the central role of NAD in plant metabolism and its regulatory role have been investigated extensively at the biochemical level, analyzing the subcellular redox dynamics of NAD in living plant tissues has been challenging. Here, we established live monitoring of NADH/NAD+ in plants using the genetically encoded fluorescent biosensor Peredox-mCherry. We established Peredox-mCherry lines of Arabidopsis (Arabidopsis thaliana) and validated the biophysical and biochemical properties of the sensor that are critical for in planta measurements, including specificity, pH stability, and reversibility. We generated an NAD redox atlas of the cytosol of living Arabidopsis seedlings that revealed pronounced differences in NAD redox status between different organs and tissues. Manipulating the metabolic status through dark-to-light transitions, respiratory inhibition, sugar supplementation, and elicitor exposure revealed a remarkable degree of plasticity of the cytosolic NAD redox status and demonstrated metabolic redox coupling between cell compartments in leaves. Finally, we used protein engineering to generate a sensor variant that expands the resolvable NAD redox range. In summary, we established a technique for in planta NAD redox monitoring to deliver important insight into the in vivo dynamics of plant cytosolic redox metabolism.


Asunto(s)
Arabidopsis/metabolismo , Técnicas Biosensibles/métodos , Citosol/metabolismo , Proteínas Luminiscentes/genética , NAD/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Fluorometría/métodos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/metabolismo , Malatos/metabolismo , Mitocondrias/metabolismo , NAD/análisis , Oxidación-Reducción , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo , Proteína Fluorescente Roja
9.
Plant Cell Environ ; 45(9): 2682-2695, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35818668

RESUMEN

Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Exp Bot ; 73(12): 4113-4128, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35383842

RESUMEN

Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.


Asunto(s)
Solanum lycopersicum , Ciclofilinas/genética , Etilenos/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Azúcares/metabolismo
11.
Plant Cell Rep ; 41(2): 431-446, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35031834

RESUMEN

KEY MESSAGE: The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flavoproteínas Transportadoras de Electrones , Aminoácidos de Cadena Ramificada/farmacología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Técnicas de Cultivo de Célula , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Regulación de la Expresión Génica de las Plantas , Isovaleril-CoA Deshidrogenasa/genética , Isovaleril-CoA Deshidrogenasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
12.
Plant Cell Rep ; 41(9): 1907-1929, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35833988

RESUMEN

KEY MESSAGE: High pigment mutants in tomato (Solanum lycopersicum L.), a loss of function in the control of photomorphogenesis, with greater pigment production, show altered growth, greater photosynthesis, and a metabolic reprogramming. High pigment mutations cause plants to be extremely responsive to light and produce excessive pigmentation as well as fruits with high levels of health-beneficial nutrients. However, the association of these traits with changes in the physiology and metabolism of leaves remains poorly understood. Here, we performed a detailed morphophysiological and metabolic characterization of high pigment 1 (hp1) and high pigment 2 (hp2) mutants in tomato (Solanum lycopersicum L. 'Micro-Tom') plants under different sunlight conditions (natural light, 50% shading, and 80% shading). These mutants occur in the DDB1 (hp1) and DET1 (hp2) genes, which are related to the regulation of photomorphogenesis and chloroplast development. Our results demonstrate that these mutations delay plant growth and height, by affecting physiological and metabolic parameters at all stages of plant development. Although the mutants were characterized by higher net CO2 assimilation, lower stomatal limitation, and higher carboxylation rates, with anatomical changes that favour photosynthesis, we found that carbohydrate levels did not increase, indicating a change in the energy flow. Shading minimized the differences between mutants and the wild type or fully reversed them in the phenotype at the metabolic level. Our results indicate that the high levels of pigments in hp1 and hp2 mutants represent an additional energy cost for these plants and that extensive physiological and metabolic reprogramming occurs to support increased pigment biosynthesis.


Asunto(s)
Solanum lycopersicum , Carbono/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Solanum lycopersicum/metabolismo , Fotosíntesis/genética , Pigmentación/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
13.
Plant J ; 101(4): 979-1000, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31953876

RESUMEN

In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/anatomía & histología , Fenómenos Fisiológicos de las Plantas , Plantas/química , Adaptación Biológica , Antioxidantes/metabolismo , Cloroplastos/ultraestructura , Clima Desértico , Ecosistema , Transporte de Electrón , Ambientes Extremos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Metabolismo Secundario
14.
Plant J ; 104(5): 1149-1168, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32996222

RESUMEN

Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , NAD/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Mutación , NAD/farmacología , Estomas de Plantas/metabolismo
15.
Plant Cell Physiol ; 62(5): 798-814, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33693904

RESUMEN

In Arabidopsis thaliana, two genes encode the E2 subunit of the 2-oxoglutarate dehydrogenase (2-OGDH), a multimeric complex composed of three subunits. To functionally characterize the isoforms of E2 subunit, we isolated Arabidopsis mutant lines for each gene encoding the E2 subunit and performed a detailed molecular and physiological characterization of the plants under controlled growth conditions. The functional lack of expression of E2 subunit isoforms of 2-OGDH increased plant growth, reduced dark respiration and altered carbohydrate metabolism without changes in the photosynthetic rate. Interestingly, plants from e2-ogdh lines also exhibited reduced seed weight without alterations in total seed number. We additionally observed that downregulation of 2-OGDH activity led to minor changes in the levels of tricarboxylic acid cycle intermediates without clear correlation with the reduced expression of specific E2-OGDH isoforms. Furthermore, the e2-ogdh mutant lines exhibited a reduction by up to 25% in the leaf total amino acids without consistent changes in the amino acid profile. Taken together, our results indicate that the two isoforms of E2 subunit play a similar role in carbon-nitrogen metabolism, in plant growth and in seed weight.


Asunto(s)
Arabidopsis/fisiología , Carbono/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Germinación , Complejo Cetoglutarato Deshidrogenasa/genética , Fotosíntesis , Filogenia , Subunidades de Proteína , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/enzimología , Semillas/crecimiento & desarrollo
16.
Planta ; 253(1): 16, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33392753

RESUMEN

MAIN CONCLUSION: Nitrogen promotes changes in SLA through metabolism and anatomical traits in Capsicum plants. Specific leaf area (SLA) is a key trait influencing light interception and light use efficiency that often impacts plant growth and production. SLA is a key trait explaining growth variations of plant species under different environments. Both light and nitrogen (N) supply are important determinants of SLA. To better understand the effect of irradiance level and N on SLA in Capsicum chinense, we evaluated primary metabolites and morphological traits of two commercial cultivars (Biquinho and Habanero) in response to changes in both parameters. Both genotypes showed increased SLA with shading, and a decrease in SLA in response to increased N supply, however, with Habanero showing a stable SLA in the range of N deficiency to sufficient N doses. Correlation analyses indicated that decreased SLA in response to higher N supply was mediated by altered amino acids, protein, and starch levels, influencing leaf density. Moreover, in the range of moderate N deficiency to N sufficiency, both genotypes exhibited differences in SLA response, with Biquinho and Habanero displaying alterations on palisade and spongy parenchyma, respectively. Altogether, the results suggest that SLA responses to N supply are modulated by the balance between certain metabolites content and genotype-dependent changes in the parenchyma cells influencing leaf thickness and density.


Asunto(s)
Capsicum , Células del Mesófilo , Nitrógeno , Hojas de la Planta , Capsicum/anatomía & histología , Capsicum/genética , Capsicum/metabolismo , Células del Mesófilo/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/anatomía & histología
17.
Plant Cell Rep ; 40(8): 1377-1393, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33074436

RESUMEN

KEY MESSAGE: The tomato mutant Never ripe (Nr), a loss-of-function for the ethylene receptor SlETR3, shows enhanced growth, associated with increased carbon assimilation and a rewiring of the central metabolism. Compelling evidence has demonstrated the importance of ethylene during tomato fruit development, yet its role on leaf central metabolism and plant growth remains elusive. Here, we performed a detailed characterization of Never ripe (Nr) tomato, a loss-of-function mutant for the ethylene receptor SlETR3, known for its fruits which never ripe. However, besides fruits, the Nr gene is also constitutively expressed in vegetative tissues. Nr mutant showed a growth enhancement during both the vegetative and reproductive stage, without an earlier onset of leaf senescence, with Nr plants exhibiting a higher number of leaves and an increased dry weight of leaves, stems, roots, and fruits. At metabolic level, Nr also plays a significant role with the mutant showing changes in carbon assimilation, carbohydrates turnover, and an exquisite reprogramming of a large number of metabolite levels. Notably, the expression of genes related to ethylene signaling and biosynthesis are not altered in Nr. We assess our results in the context of those previously published for tomato fruits and of current models of ethylene signal transduction, and conclude that ethylene insensitivity mediated by Nr impacts the whole central metabolism at vegetative stage, leading to increased growth rates.


Asunto(s)
Etilenos/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , Carbono/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Almidón/metabolismo , Sacarosa/metabolismo
18.
Biochem J ; 477(9): 1759-1777, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32329787

RESUMEN

A homolog of the mitochondrial succinate/fumarate carrier from yeast (Sfc1p) has been found in the Arabidopsis genome, named AtSFC1. The AtSFC1 gene was expressed in Escherichia coli, and the gene product was purified and reconstituted in liposomes. Its transport properties and kinetic parameters demonstrated that AtSFC1 transports citrate, isocitrate and aconitate and, to a lesser extent, succinate and fumarate. This carrier catalyzes a fast counter-exchange transport as well as a low uniport of substrates, exhibits a higher transport affinity for tricarboxylates than dicarboxylates, and is inhibited by pyridoxal 5'-phosphate and other inhibitors of mitochondrial carriers to various degrees. Gene expression analysis indicated that the AtSFC1 transcript is mainly present in heterotrophic tissues, and fusion with a green-fluorescent protein localized AtSFC1 to the mitochondria. Furthermore, 35S-AtSFC1 antisense lines were generated and characterized at metabolic and physiological levels in different organs and at various developmental stages. Lower expression of AtSFC1 reduced seed germination and impaired radicle growth, a phenotype that was related to reduced respiration rate. These findings demonstrate that AtSFC1 might be involved in storage oil mobilization at the early stages of seedling growth and in nitrogen assimilation in root tissue by catalyzing citrate/isocitrate or citrate/succinate exchanges.


Asunto(s)
Arabidopsis , Proteínas Portadoras , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Grasos/metabolismo , Fumaratos/metabolismo , Expresión Génica , Genes Fúngicos , Genes de Plantas , Cinética , Liposomas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Plantones/crecimiento & desarrollo , Succinatos/metabolismo , Ácidos Tricarboxílicos/metabolismo
19.
J Environ Manage ; 299: 113668, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34492441

RESUMEN

This study aimed to evaluate the simultaneous interferences of Cu and Zn found in swine wastewater (SW) in the development of microalgae considering real conditions of cultivation in high rate algal ponds (HRAPs). Ten HRAPs on a pilot scale were fed with SW with different mixtures of Cu (0.5-3.0 mg/L) and Zn (5.0-25.0 mg/L). The interferences of these metals in removing nutrients (N-NH4+ and soluble phosphorus (Ps)) from the SW were determined. In addition, this study evaluated the effects on biomass growth and biochemical composition. Chlorella sp. was dominant in all HRAPs and the condition that potentiated its growth occurred in medium containing 1.8 mg Cu/L + 15.0 mg Zn/L, while higher concentrations conferred inhibition. Only Cu compromised the removal rates of N-NH4+ while the effects of Zn were not significant. Contrary, Zn interfered with Ps removal rates, but the impact of Cu was not significant. The greatest Cu applications increased the protein levels by biomass (50.5-55.2 %). Carbohydrate accumulation was favored by conditions that inhibited the development of microalgae due to either limitation or excess of metals. Copper and Zn compromised the levels of lipids, and the control treatment had the highest content (24.5 %). The presence of Cu and Zn changed the dynamics of HRAPs regarding nutrient removal, productivity, and biochemical composition of the biomass.


Asunto(s)
Chlorella , Microalgas , Purificación del Agua , Animales , Biomasa , Nitrógeno/análisis , Nutrientes , Estanques , Porcinos , Aguas Residuales , Zinc
20.
Plant J ; 100(3): 487-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31278825

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , NAD/metabolismo , Antiportadores/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas Fluorescentes Verdes , Homeostasis , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Insercional , Proteínas de Transporte de Nucleótidos , Peroxisomas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA