Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 37(2): e22781, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36688818

RESUMEN

The adhesion receptor ADGRA3 (GPR125) is a known spermatogonial stem cell marker, but its impact on male reproduction and fertility has not been examined. Using a mouse model lacking Adgra3 (Adgra3-/- ), we show that 55% of the male mice are infertile from puberty despite having normal spermatogenesis and epididymal sperm count. Instead, male mice lacking Adgra3 exhibited decreased estrogen receptor alpha expression and transient dilation of the epididymis. Combined with an increased estradiol production, this indicates a post-pubertal hormonal imbalance and fluid retention. Dye injection revealed a blockage between the ejaculatory duct and the urethra, which is rare in mice suffering from infertility, thereby mimicking the etiologies of obstructive azoospermia found in human male infertility. To summarize, male reproductive tract development is dependent on ADGRA3 function that in concert with estrogen signaling may influence fluid handling during sperm maturation and storage.


Asunto(s)
Azoospermia , Infertilidad Masculina , Masculino , Humanos , Azoospermia/complicaciones , Azoospermia/metabolismo , Penetrancia , Semen , Infertilidad Masculina/metabolismo , Epidídimo/metabolismo
2.
Hum Genet ; 141(8): 1355-1369, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35039925

RESUMEN

NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.


Asunto(s)
Discapacidad Intelectual , Acetiltransferasa A N-Terminal , Acetiltransferasa E N-Terminal , Acetilación , Genes Ligados a X , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA