Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38632043

RESUMEN

Although filamentous Ascomycetes may produce structures that are interpreted as male and female gametangia, ascomycetous yeasts are generally not considered to possess male and female sexes. In haplontic yeasts of the genus Metschnikowia, the sexual cycle begins with the fusion of two morphologically identical cells of complementary mating types. Soon after conjugation, a protuberance emerges from one of the conjugants, eventually maturing into an ascus. The originating cell can be regarded as an ascus mother cell, hence as female. We tested the hypothesis that the sexes, female or male, are determined by the mating types. There were good reasons to hypothesize further that mating type α cells are male. In a conceptually simple experiment, we observed the early stages of the mating reaction of mating types differentially labeled with fluorescent concanavalin A conjugates. Three large-spored Metschnikowia species, M. amazonensis, M. continentalis, and M. matae, were examined. In all three, the sexes were found to be independent of mating type, cautioning that the two terms should not be used interchangeably.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Metschnikowia , Metschnikowia/fisiología , Metschnikowia/clasificación
2.
J Magn Reson Imaging ; 57(6): 1856-1864, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36239714

RESUMEN

BACKGROUND: Fetal myelination assessment is important for understanding neurodevelopment and neurodegeneration. Myelin water imaging (MWI) quantifies myelin water fraction (MWF), a validated marker for myelin content, and has been used to assess brain myelin in children and neonates. PURPOSE: To demonstrate that MWI can quantify MWF in fetal guinea pigs (GPs). STUDY TYPE: Animal model. ANIMAL MODEL: Nine pregnant, Dunkin-Hartley GPs with 31 fetuses (mean ± standard deviation = 60 ± 1.5 days gestation). FIELD STRENGTH/SEQUENCE: 3D spoiled gradient echo and balanced steady-state free precession sequences at 3.0 T. ASSESSMENT: MWF maps were reconstructed for maternal and fetal GP brains using the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach. Myelin basic protein (MBP) stain provided histological validation of the MWF. Regions of interest were placed in the maternal corpus callosum (CC), maternal fornix (FOR), fetal CC, and fetal FOR in MWF maps and MBP stains. STATISTICAL TESTS: Linear regression between MWF and MBP stain intensity (SI) of all four regions (coefficient of determination, R2 ). A paired t-test compared the MWF of maternal and mean fetal CC, MBP SI of maternal and mean fetal CC, MWF of maternal and mean fetal FOR, MBP SI of maternal and mean fetal FOR. A paired t-test with a linear mixed model compared the MWF of fetal CC and fetal FOR, and MBP SI of fetal CC and fetal FOR. A  P value < 0.0083 was considered statistically significant. RESULTS: The mean MWF of the analyzed regions are as follows (mean ± standard deviation): 0.338 + 0.016 (maternal CC), 0.340 ± 0.017 (maternal FOR), 0.214 ± 0.016 (fetal CC), and 0.305 ± 0.025 (fetal FOR). MWF correlated with MBP SI in all regions (R2  = 0.81). Significant differences were found between MWF and MBP SI of maternal and fetal CC, and MWF and MBP SI of fetal CC and fetal FOR. DATA CONCLUSION: This study demonstrated the feasibility of MWI in assessing fetal brain myelin content. EVIDENCE LEVEL: 2 Technical Efficacy: Stage 1.


Asunto(s)
Vaina de Mielina , Agua , Embarazo , Femenino , Cobayas , Animales , Vaina de Mielina/metabolismo , Estudios de Factibilidad , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
3.
FASEB J ; 35(9): e21788, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34425031

RESUMEN

Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.


Asunto(s)
Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Hipoxia/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Animales , Eritropoyetina/metabolismo , Peso Fetal , Feto/química , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas In Vitro , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Microscopía Fluorescente , Tamaño de los Órganos , Papio , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Receptores de Eritropoyetina/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Am J Physiol Endocrinol Metab ; 319(3): E614-E628, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744097

RESUMEN

In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (-13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (-64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α'/ß) expression, CK2ß colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, -52%, P = 0.05) and mTORC2 (p-AktSer473, -56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.


Asunto(s)
Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Papio , Aminoácidos/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Femenino , Privación de Alimentos , Edad Gestacional , Hígado/embriología , Tamaño de los Órganos , Fosforilación , Placenta/metabolismo , Embarazo , Serina-Treonina Quinasas TOR/metabolismo
5.
Dev Neurosci ; 41(5-6): 290-299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32316015

RESUMEN

BACKGROUND: We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for brain hypoxia and oxidative stress. METHODS: Guinea pigs were fed ad libitum (control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1) was injected into pregnant sows. Fetuses were then necropsied and brain tissues were processed for HP-1 (hypoxia marker) and 4HNE, 8-OHdG, and 3-nitrotyrosine (oxidative stress markers) immunoreactivity (IR). RESULTS: FGR-MNR fetal and brain weights were decreased 38 and 12%, respectively, with brain/fetal weights thereby increased 45% as a measure of brain sparing, and more so in males than females. FGR-MNR HP-1 IR was increased in most of the brain regions studied, and more so in males than females, while 4HNE and 8-OHdG IR were increased in select brain regions, but with no sex differences. CONCLUSIONS: Chronic hypoxia is likely to be an important signaling mechanism in the FGR brain, but with males showing more hypoxia than females. This may involve sex differences in adaptive decreases in growth and normalizing of oxygen, with implications for sex-specific alterations in brain development and risk for later neuropsychiatric disorder.

6.
Am J Pathol ; 188(1): 111-124, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29037858

RESUMEN

Insulin-like growth factor binding protein (IGFBP)-1 influences fetal growth by modifying insulin-like growth factor-I (IGF-I) bioavailability. IGFBP-1 phosphorylation, which markedly increases its affinity for IGF-I, is regulated by mechanistic target of rapamycin (mTOR) and casein kinase (CSNK)-2. However, the underlying molecular mechanisms remain unknown. We examined the cellular localization and potential interactions of IGFBP-1, CSNK-2ß, and mTOR as a prerequisite for protein-protein interaction. Analysis of dual immunofluorescence images indicated a potential perinuclear co-localization between IGFBP-1 and CSNK-2ß and a nuclear co-localization between CSNK-2ß and mTOR. Proximity ligation assay (PLA) indicated proximity between IGFBP-1 and CSNK-2ß as well as mTOR and CSNK-2ß but not between mTOR and IGFBP-1. Three-dimensional rendering of the PLA images validated that IGFBP-1 and CSNK-2ß interactions were in the perinuclear region and mTOR and CSNK-2ß interactions were also predominantly perinuclear rather than nuclear as indicated by mTOR and CSNK-2ß co-localization. Compared with control, hypoxia and rapamycin treatment showed markedly amplified PLA signals for IGFBP-1 and CSNK-2ß (approximately 18-fold, P = 0.0002). Stable isotope labeling with multiple reaction monitoring-mass spectrometry demonstrated that hypoxia and rapamycin treatment increased IGFBP-1 phosphorylation at Ser98/Ser101/Ser119/Ser174 but most considerably (106-fold) at Ser169. We report interactions between CSNK-2ß and IGFBP-1 as well as mTOR and CSNK-2ß, providing strong evidence of a mechanistic link between mTOR and IGF-I signaling, two critical regulators of cell growth via CSNK-2.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Carcinoma Hepatocelular/patología , Técnica del Anticuerpo Fluorescente , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Fosforilación , Transducción de Señal/fisiología
7.
Pediatr Res ; 85(1): 105-112, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420709

RESUMEN

BACKGROUND: We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts cell death in the brain with implications for neurodevelopmental adversity. METHODS: Guinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Fetuses were necropsied near term and brain tissues processed for necrosis (H&E), apoptosis (TUNEL), and pro- (Bax) and anti- (Bcl-2 and Grp78) apoptotic protein immunoreactivity. RESULTS: FGR-MNR fetal and brain weights were decreased 38% and 12%, respectively, indicating brain sparing but with brains still smaller. While necrosis remained unchanged, apoptosis was increased in the white matter and hippocampus in the FGR brains, and control and FGR-related apoptosis were increased in males for most brain areas. Bax was increased in the CA4 and Bcl-2 was decreased in the dentate gyrus in the FGR brains supporting a role in the increased apoptosis, while Grp78 was increased in the FGR females, possibly contributing to the sex-related differences. CONCLUSIONS: MNR-induced FGR results in increased brain apoptosis with regional and sex-related differences that may contribute to the reduction in brain area size reported clinically and increased risk in FGR males for later neurodevelopmental adversity.


Asunto(s)
Apoptosis , Encéfalo/patología , Restricción Calórica , Retardo del Crecimiento Fetal/etiología , Desnutrición/complicaciones , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/fisiopatología , Cobayas , Proteínas de Choque Térmico/metabolismo , Masculino , Desnutrición/fisiopatología , Embarazo , Factores Sexuales , Proteína X Asociada a bcl-2/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L524-L533, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28546153

RESUMEN

Alterations to the pulmonary surfactant system have been observed consistently in ventilation-induced lung injury (VILI) including composition changes and impairments in the surface tension reducing ability of the isolated extracellular surfactant. However, there is limited information about the effects of VILI on the intracellular form of surfactant, the lamellar body. It is hypothesized that VILI leads to alterations of lamellar body numbers and function. To test this hypothesis, rats were randomized to one of three groups, nonventilated controls, control ventilation, and high tidal volume ventilation (VILI). Following physiological assessment to confirm lung injury, isolated lamellar bodies were tested for surfactant function on a constrained sessile drop surfactometer. A separate cohort of animals was used to fix the lungs followed by examination of lamellar body numbers and morphology using transmission electron microscopy. The results showed an impaired ability of reducing surface tension for the lamellar bodies isolated from the VILI group as compared with the two other groups. The morphological assessment revealed that the number, and the relative area covered by, lamellar bodies were significantly decreased in animals with VILI animals as compared with the other groups. It is concluded that VILI causes significant alterations to lamellar bodies. It is speculated that increased secretion causes a depletion of lamellar bodies that cannot be compensated by de novo synthesis of surfactant in these injured lungs.


Asunto(s)
Lisosomas/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/ultraestructura , Animales , Colesterol/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Masculino , Oxígeno/metabolismo , Fosfolípidos/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Surfactantes Pulmonares/farmacología , Ratas Sprague-Dawley , Tensión Superficial/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
9.
Pediatr Res ; 82(1): 141-147, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28376077

RESUMEN

BackgroundWe determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for tissue hypoxia, implicating a mechanistic role for chronic hypoxia.MethodsGuinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1), a marker of tissue hypoxia, was injected into pregnant sows. Fetuses were then necropsied and liver, kidney, and placental tissues were processed for erythropoietin (EPO), EPO-receptor (EPOR), and vascular endothelial growth factor (VEGF) protein levels, and for HP-1 immunoreactivity (IR).ResultsFGR-MNR fetuses were 36% smaller with asymmetrical growth restriction compared to controls. EPO and VEGF protein levels were increased in the female FGR-MNR fetuses, providing support for hypoxic stimulus and linkage to increased erythropoiesis, but not in the male FGR-MNR fetuses, possibly reflecting a weaker link between oxygenation and erythropoiesis. HP-1 IR was increased in the liver and kidneys of both male and female FGR-MNR fetuses as an index of local tissue hypoxia, but with no changes in the placenta.ConclusionChronic hypoxia is likely to be an important signaling mechanism for the decreased fetal growth seen with maternal undernutrition and appears to be post-placental in nature.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Hipoxia/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal , Animales , Estudios de Cohortes , Eritropoyetina/metabolismo , Femenino , Desarrollo Fetal , Cobayas , Inmunohistoquímica , Masculino , Nitroimidazoles/metabolismo , Placenta/metabolismo , Embarazo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Am J Obstet Gynecol ; 215(3): 361.e1-361.e15, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27001218

RESUMEN

BACKGROUND: Decorin, a leucine-rich proteoglycan that is produced by decidual cells, limits invasion and endovascular differentiation of extravillous trophoblast cells during early placentation by binding to multiple tyrosine kinase receptors, in particular, vascular endothelial growth factor receptor-2. OBJECTIVE: Because many studies have reported an association between poor trophoblast invasion and endovascular differentiation with preeclampsia, the studies reported here tested (1) whether decorin over-expression in the chorionic villi and/or basal decidua is associated with preeclampsia and, if so, (2) whether this association results in a hypoinvasive placenta, and (3) whether elevated plasma decorin concentration in the second trimester is a predictive biomarker for preeclampsia. STUDY DESIGN: Decorin messenger RNA expression was measured with quantitative polymerase chain reaction at the tissue level and with in situ hybridization at the cellular level using (35)S-labeled antisense complimentary RNA probe in placentas from healthy control subjects and subjects with preeclampsia (14 each, 23-40 weeks of gestation). Tissue sections of the same placentas were also immunostained for decorin protein. A decorin over-expressing human endometrial stromal cell line was tested for invasion-regulatory effects on an invasive first-trimester extravillous trophoblast cell line HTR-8/SVneo plated in cocultures that were separated by a semipermeable membrane. Furthermore, we conducted retrospective measurements of plasma decorin levels during the second trimester (15-18 weeks of gestation) in a cohort of 28 body mass index-matched pairs of control subjects and subjects with preeclampsia before the onset of clinical disease. RESULTS: First, decorin messenger RNA expression at the cellular level measured with in situ hybridization exhibited profoundly higher expression levels in basal plate decidual cells within the placentas from preeclamptic subjects than those from control subjects at all gestational ages, whereas no difference between the 2 subject groups was noted in villus mesenchymal cells. Similarly decorin messenger RNA expression at the tissue level in chorionic villi (primarily resulting from fetally derived mesenchymal cells) did not differ significantly between control and preeclampsia placentas. These findings were validated with immunostaining for decorin protein. Second, knocking down decorin gene in a decorin over-expressing endometrial cell line (used as an in vitro surrogate of decorin over-expressing decidual cells) in cocultures with extravillous trophoblast cells abrogated its invasion-restraining actions on trophoblast cells, which indicated paracrine contribution of decorin over-expressing decidua to the poor trophoblast invasiveness in situ. Finally, retrospective measurement of plasma decorin levels during the second trimester in 28 body mass index-matched pairs of control subjects and subjects with preeclampsia revealed elevated plasma decorin levels in all subjects with preeclampsia in all body mass index groups. A receiver operating characteristic curve analysis revealed strong diagnostic performance of plasma decorin in the prediction of preeclampsia status. Although there was no significant gestational age-related change in decorin levels during the second trimester in control or subjects with preeclampsia, we found that plasma decorin had a significant inverse relationship with body mass index or bodyweight. CONCLUSION: We conclude that decorin over-expression by basal decidual cells is associated with hypoinvasive phenotype and poor endovascular differentiation of trophoblast cells in preeclampsia and that elevated plasma decorin concentration is a potential predictive biomarker for preeclampsia before the onset of clinical signs.


Asunto(s)
Decidua/metabolismo , Decorina/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Decidua/citología , Decorina/genética , Femenino , Humanos , Hibridación in Situ , Reacción en Cadena de la Polimerasa , Embarazo , Segundo Trimestre del Embarazo , ARN Mensajero/metabolismo
11.
Exp Dermatol ; 24(2): 120-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25421393

RESUMEN

Hypertrophic scarring is characterized by the excessive development and persistence of myofibroblasts. These cells contract the surrounding extracellular matrix resulting in the increased tissue density characteristic of scar tissue. Periostin is a matricellular protein that is abnormally abundant in fibrotic dermis, however, its roles in hypertrophic scarring are largely unknown. In this report, we assessed the ability of matrix-associated periostin to promote the proliferation and myofibroblast differentiation of dermal fibroblasts isolated from the dermis of hypertrophic scars or healthy skin. Supplementation of a thin type-I collagen cell culture substrate with recombinant periostin induced a significant increase in the proliferation of hypertrophic scar fibroblasts but not normal dermal fibroblasts. Periostin induced significant increases in supermature focal adhesion formation, α smooth muscle actin levels and collagen contraction in fibroblasts cultured from hypertrophic scars under conditions of increased matrix tension in three-dimensional type-I collagen lattices. Inhibition of Rho-associated protein kinase activity significantly attenuated the effects of matrix-associated periostin on hypertrophic scar fibroblasts and myofibroblasts. Depletion of endogenous periostin expression in hypertrophic scar myofibroblasts resulted in a sustained decrease in α smooth muscle actin levels under conditions of reducing matrix tension, while matrix-associated periostin levels caused the cells to retain high levels of a smooth muscle actin under these conditions. These findings indicate that periostin promotes Rho-associated protein kinase-dependent proliferation and myofibroblast persistence of hypertrophic scar fibroblasts and implicate periostin as a potential therapeutic target to enhance the resolution of scars.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Cicatriz Hipertrófica/metabolismo , Fibroblastos/citología , Miofibroblastos/citología , Adulto , Diferenciación Celular , Proliferación Celular , Colágeno/química , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Microscopía Confocal , Microscopía Fluorescente , Persona de Mediana Edad , Proteínas Recombinantes/química , Piel/metabolismo , Cicatrización de Heridas/fisiología
12.
Dev Neurosci ; 36(6): 465-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25277216

RESUMEN

This study examines aberrant synaptogenesis and myelination of neuronal connections as possible links to neurological sequelae in growth-restricted fetuses. Pregnant guinea pig sows were subjected to uterine blood flow restriction or sham surgeries at midgestation. The animals underwent necropsy at term with fetuses grouped according to body weight and brain-to-liver weight ratios as follows: appropriate for gestational age (n = 12); asymmetrically fetal growth restricted (aFGR; n = 8); symmetrically fetal growth restricted (sFGR; n = 8), and large for gestational age (n = 8). Fetal brains were perfusion fixed and paraffin embedded to determine immunoreactivity for synaptophysin and synaptopodin as markers of synaptic development and maturation, respectively, and for myelin basic protein as a marker for myelination, which was further assessed using Luxol fast blue staining. The most pertinent findings were that growth-restricted guinea pig fetuses exhibited reduced synaptogenesis and synaptic maturation as well as reduced myelination, which were primarily seen in subareas of the hippocampus and associated efferent tracts. These neurodevelopmental changes were more pronounced in the sFGR compared to the aFGR animals. Accordingly, altered hippocampal development involving synaptogenesis and myelination may represent a mechanism by which cognitive deficits manifest in human growth-restricted offspring in later life.


Asunto(s)
Vías Eferentes/metabolismo , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/metabolismo , Hipocampo/metabolismo , Vaina de Mielina/metabolismo , Sinapsis/metabolismo , Animales , Modelos Animales de Enfermedad , Vías Eferentes/embriología , Femenino , Feto , Cobayas , Hipocampo/embriología , Humanos , Embarazo
13.
Biology (Basel) ; 13(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38248469

RESUMEN

BACKGROUND: Glucosensing elements are widely distributed throughout the body and relay information about circulating glucose levels to the brain via the vagus nerve. However, while anatomical wiring has been established, little is known about the physiological role of the vagus nerve in glucosensing. The contribution of the vagus nerve to inflammation in the fetus is poorly understood. Increased glucose levels and inflammation act synergistically when causing organ injury, but their interplay remains incompletely understood. We hypothesized that vagotomy (Vx) will trigger a rise in systemic glucose levels and this will be enhanced during systemic and organ-specific inflammation. Efferent vagus nerve stimulation (VNS) should reverse this phenotype. METHODS: Near-term fetal sheep (n = 57) were surgically prepared using vascular catheters and ECG electrodes as the control and treatment groups (lipopolysaccharide (LPS), Vx + LPS, Vx + LPS + selective efferent VNS). The experiment was started 72 h postoperatively to allow for post-surgical recovery. Inflammation was induced with LPS bolus intravenously (LPS group, 400 ng/fetus/day for 2 days; n = 23). For the Vx + LPS group (n = 11), a bilateral cervical vagotomy was performed during surgery; of these n = 5 received double the LPS dose, LPS800. The Vx + LPS + efferent VNS group (n = 8) received cervical VNS probes bilaterally distal from Vx in eight animals. Efferent VNS was administered for 20 min on days 1 and 2 +/10 min around the LPS bolus. Fetal arterial blood samples were drawn on each postoperative day of recovery (-72 h, -48 h, and -24 h) as well as at the baseline and seven selected time points (3-54 h) to profile inflammation (ELISA IL-6, pg/mL), insulin (ELISA), blood gas, and metabolism (glucose). At 54 h post-LPS, a necropsy was performed, and the terminal ileum macrophages' CD11c (M1 phenotype) immunofluorescence was quantified to detect inflammation. The results are reported for p < 0.05 and for Spearman R2 > 0.1. The results are presented as the median (IQR). RESULTS: Across the treatment groups, blood gas and cardiovascular changes indicated mild septicemia. At 3 h in the LPS group, IL-6 peaked. That peak was decreased in the Vx + LPS400 group and doubled in the Vx + LPS800 group. The efferent VNS sped up the reduction in the inflammatory response profile over 54 h. The M1 macrophage activity was increased in the LPS and Vx + LPS800 groups only. The glucose and insulin concentrations in the Vx + LPS group were, respectively, 1.3-fold (throughout the experiment) and 2.3-fold higher vs. control (at 3 h). The efferent VNS normalized the glucose concentrations. CONCLUSIONS: The complete withdrawal of vagal innervation resulted in a 72-h delayed onset of a sustained increase in glucose for at least 54 h and intermittent hyperinsulinemia. Under the conditions of moderate fetal inflammation, this was related to higher levels of gut inflammation. The efferent VNS reduced the systemic inflammatory response as well as restored both the concentrations of glucose and the degree of terminal ileum inflammation, but not the insulin concentrations. Supporting our hypothesis, these findings revealed a novel regulatory, hormetic, role of the vagus nerve in the immunometabolic response to endotoxin in near-term fetuses.

14.
Tissue Eng Part A ; 28(3-4): 175-183, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34309434

RESUMEN

Postsurgical infections of the shoulder joint involving Cutibacterium acnes are difficult to diagnose and manage. Despite the devastating clinical complications and costly health care burden of joint infections, the scarcity of joint infection models was identified as an unmet need by the 2019 International Consensus on Orthopedic Infections. In this study, we have developed a novel 3D shoulder joint implant mimetic (S-JIM) that includes a surgical metal surface and supports a co-culture of C. acnes and patient-derived shoulder capsule fibroblasts. Our findings indicate the S-JIM can generate a near anaerobic interior environment that allows for C. acnes proliferation and elicits fibroblast cell lysis responses that are consistent with clinical reports of tissue necrosis. Using the S-JIM, we have provided proof-of-concept for the use of mass spectrometry in real-time detection of C. acnes joint infections during surgery. The S-JIM is the first in vitro cell culture-based biomimetic of periprosthetic joint infection (PJI) that provides a preclinical method for the rapid and reliable testing of novel anti-PJI interventions. Impact statement We have developed the first 3D laboratory biomimetic of the postsurgical human shoulder joint to study periprosthetic joint infections.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Infecciones Relacionadas con Prótesis , Articulación del Hombro , Biomimética , Humanos , Propionibacterium acnes , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/cirugía , Articulación del Hombro/cirugía
15.
Mol Cell Endocrinol ; 536: 111400, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314739

RESUMEN

Fetal growth restriction (FGR) is associated with decreased nutrient availability and reduced insulin-line growth factor (IGF)-I bioavailability via increased IGF binding protein (IGFBP)-1 phosphorylation. While protein kinase C (PKC) is implicated in IGFBP-1 hyperphosphorylation in nutrient deprivation, the mechanisms remain unclear. We hypothesised that the interaction of PKCα with protein kinase CK2ß and activation of PKCα under leucine deprivation (L0) mediate fetal hepatic IGFBP-1 hyperphosphorylation. Parallel Reaction Monitoring Mass Spectrometry (PRM-MS) followed by PKCα knockdown demonstrated the PKCα isoform interacts with IGFBP-1 and CK2ß under L0. Pharmacological PKCα activation with phorbol 12-myristate 13-acetate (PMA) increased whereas inhibition with bisindolylmaleimide II (Bis II) decreased IGFBP-1 phosphorylation (Ser101/119/169, Ser98 + 101 and Ser169 + 174), respectively. Furthermore, PMA mimicked L0-induced PKCα translocation and IGFBP-1 expression. PKCα expression was increased in baboon fetal liver in FGR, providing biological relevance in vivo. In summary, we report a novel nutrient-sensitive mechanism for PKCα in mediating IGFBP-1 hyperphosphorylation in FGR.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Leucina/deficiencia , Hígado/embriología , Proteína Quinasa C-alfa/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Retardo del Crecimiento Fetal/genética , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Indoles/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Maleimidas/farmacología , Espectrometría de Masas , Modelos Biológicos , Papio , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/genética , Transporte de Proteínas , Acetato de Tetradecanoilforbol/farmacología
16.
Nutrients ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959870

RESUMEN

Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar "Western" diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male "lean" offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta Occidental/efectos adversos , Insulina/sangre , Mitocondrias/metabolismo , Músculo Esquelético/irrigación sanguínea , Animales , Animales Recién Nacidos , Peso al Nacer , Glucemia/metabolismo , Carnitina/análogos & derivados , Carnitina/sangre , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal , Cobayas , Metabolismo de los Lípidos , Masculino , Insuficiencia Placentaria , Embarazo , Transducción de Señal
17.
Acta Neuropathol Commun ; 9(1): 60, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823944

RESUMEN

We have previously reported long-term changes in the brains of non-concussed varsity rugby players using magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and functional magnetic imaging (fMRI). Others have reported cognitive deficits in contact sport athletes that have not met the diagnostic criteria for concussion. These results suggest that repetitive mild traumatic brain injuries (rmTBIs) that are not severe enough to meet the diagnostic threshold for concussion, produce long-term consequences. We sought to characterize the neuroimaging, cognitive, pathological and metabolomic changes in a mouse model of rmTBI. Using a closed-skull model of mTBI that when scaled to human leads to rotational and linear accelerations far below what has been reported for sports concussion athletes, we found that 5 daily mTBIs triggered two temporally distinct types of pathological changes. First, during the first days and weeks after injury, the rmTBI produced diffuse axonal injury, a transient inflammatory response and changes in diffusion tensor imaging (DTI) that resolved with time. Second, the rmTBI led to pathological changes that were evident months after the injury including: changes in magnetic resonance spectroscopy (MRS), altered levels of synaptic proteins, behavioural deficits in attention and spatial memory, accumulations of pathologically phosphorylated tau, altered blood metabolomic profiles and white matter ultrastructural abnormalities. These results indicate that exceedingly mild rmTBI, in mice, triggers processes with pathological consequences observable months after the initial injury.


Asunto(s)
Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Animales , Conducta Animal , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Mol Cell Endocrinol ; 512: 110865, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32502935

RESUMEN

Decidual mechanistic target of rapamycin (mTOR) is inhibited, amino acid response (AAR) and protein kinase CK2 are activated, and IGF (insulin-like growth factor) binding protein (IGFBP)-1 is hyperphosphorylated in human intrauterine growth restriction (IUGR). Using decidualized human immortalized endometrial stromal cells (HIESC), we hypothesized that hypoxia and leucine deprivation causing inhibition of decidual IGF-1 signaling is mediated by mTOR, AAR, CK2 and IGFBP-1 phosphorylation. Mass spectrometry demonstrated that hypoxia (1% O2) or rapamycin increased IGFBP-1 phosphorylation singly at Ser101/119/169 (confirmed using immunoblotting) and dually at pSer169 + 174. Hypoxia resulted in mTOR inhibition, AAR and CK2 activation, and decreased IGF-1 bioactivity, with no additional changes with rapamycin + hypoxia. Rapamycin and/or hypoxia promoted colocalization of IGFBP-1 and CK2 (dual-immunofluorescence and proximity ligation assay). Leucine deprivation showed similar outcomes. Changes in IGFBP-1 phosphorylation regulated by mTOR/AAR signaling and CK2 may represent a novel mechanism linking oxygen and nutrient availability to IGF-1 signaling in the decidua.


Asunto(s)
Hipoxia de la Célula/fisiología , Decidua/metabolismo , Leucina/deficiencia , Sistemas de Transporte de Aminoácidos/metabolismo , Quinasa de la Caseína II/metabolismo , Células Cultivadas , Decidua/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Leucina/farmacología , Fosforilación , Receptores de Aminoácidos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
19.
J Clin Endocrinol Metab ; 104(2): 408-422, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124960

RESUMEN

Context: The mechanisms underpinning intrauterine growth restriction (IUGR), as a result of placental insufficiency, remain poorly understood, no specific treatment is available, and clinically useful biomarkers for early detection are lacking. Objective: We hypothesized that human IUGR is associated with inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling, increased protein kinase casein kinase-2 (CK2) activity, and increased insulin-like growth factor-binding protein 1 (IGFBP-1) expression and phosphorylation in decidua and that maternal plasma IGFBP-1 hyperphosphorylation in the first trimester predicts later development of IUGR. Design, Setting, and Participants: Decidua [n = 16 appropriate-for-gestational age (AGA); n = 16 IUGR] and maternal plasma (n = 13 AGA; n = 13 IUGR) were collected at delivery from two different cohorts. In addition, maternal plasma was obtained in the late first trimester from a third cohort of women (n = 7) who later delivered an AGA or IUGR infant. Main Outcome Measures: Total IGFBP-1 expression and phosphorylation (Ser101/Ser119/Ser169), mTOR, AAR, and CK2 activity in decidua and IGFBP-1 concentration and phosphorylation in maternal plasma. Results: We show that decidual IGFBP-1 expression and phosphorylation are increased, mTOR is markedly inhibited, and AAR and CK2 are activated in IUGR. Moreover, IGFBP-1 hyperphosphorylation in first-trimester maternal plasma is associated with the development of IUGR. Conclusions: These data are consistent with the possibility that the decidua functions as a nutrient sensor linking limited oxygen and nutrient availability to increased IGFBP-1 phosphorylation, possibly mediated by mTOR and AAR signaling. IGFBP-1 hyperphosphorylation in first-trimester maternal plasma may serve as a predictive IUGR biomarker, allowing early intervention.


Asunto(s)
Decidua/metabolismo , Retardo del Crecimiento Fetal/diagnóstico , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Cohortes , Decidua/patología , Femenino , Retardo del Crecimiento Fetal/sangre , Retardo del Crecimiento Fetal/metabolismo , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Fosforilación , Embarazo , Primer Trimestre del Embarazo , Pronóstico , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adulto Joven
20.
J Histochem Cytochem ; 66(9): 617-630, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29718759

RESUMEN

Intrauterine growth restriction (IUGR) is often caused by placental insufficiency, which is believed to be associated with decreased delivery of oxygen and nutrients to the placental barrier. We recently reported that hypoxia and/or leucine deprivation triggered hyperphosphorylation of insulin-like growth factor binding protein-1 (IGFBP-1) in decidualized human immortalized endometrial stromal cells (HIESCs), resulting in decreased insulin-like growth factor-1 (IGF-1) bioactivity. To test the hypothesis that human IUGR is associated with increased decidual IGFBP-1 phosphorylation at discrete sites, we used IUGR and gestational age matched appropriate for gestational age (AGA) placentas ( n=5 each). We performed dual immunofluorescence immunohistochemistry (IHC) using IGFBP-1 and vimentin as decidual and mesenchymal markers, respectively. Employing a unique strategy with imaging software, we extracted signal intensity of IGFBP-1 expressed specifically from truly decidualized cells of the placenta. Relative IGFBP-1 was increased (85%; p=0.0001) and using custom phospho-site-specific antibodies, we found that IGFBP-1 phosphorylation (pSer101; +40%, p=0.0677/pSer119; +60%, p=0.0064/pSer169; +100%, p=0.0021) was markedly enhanced in IUGR. Together, our data links for the first time, increased decidual IGFBP-1 phosphorylation at discrete sites with human IUGR. These novel findings suggest that hyperphosphorylation of IGFBP-1 in decidualized stromal mesenchymal decidua basalis contributes to potentially elevated levels of phosphorylated IGFBP-1 in maternal circulation in IUGR pregnancies.


Asunto(s)
Decidua/patología , Retardo del Crecimiento Fetal/patología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/análisis , Células Madre Mesenquimatosas/patología , Adulto , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Microscopía Fluorescente , Fosforilación , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA