RESUMEN
Hybrid genotypes have been repeatedly described among natural isolates of Leishmania, and the recovery of experimental hybrids from sand flies co-infected with different strains or species of Leishmania has formally demonstrated that members of the genus possess the machinery for genetic exchange. As neither gamete stages nor cell fusion events have been directly observed during parasite development in the vector, we have relied on a classical genetic analysis to determine if Leishmania has a true sexual cycle. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of experimental hybrids generated within and between different strains of L. major and L. infantum. We also generated and sequenced the first experimental hybrids in L. tropica. We found that in each case the parental somy and allele contributions matched the inheritance patterns expected under meiosis 97-99% of the time. The hybrids were equivalent to F1 progeny, heterozygous throughout most of the genome for the markers that were homozygous and different between the parents. Rare, non-Mendelian patterns of chromosomal inheritance were observed, including a gain or loss of somy, and loss of heterozygosity, that likely arose during meiosis or during mitotic divisions of the progeny clones in the fly or culture. While the interspecies hybrids appeared to be sterile, the intraspecies hybrids were able to produce backcross and outcross progeny. Analysis of 5 backcross and outcross progeny clones generated from an L. major F1 hybrid, as well as 17 progeny clones generated from backcrosses involving a natural hybrid of L. tropica, revealed genome wide patterns of recombination, demonstrating that classical crossing over occurs at meiosis, and allowed us to construct the first physical and genetic maps in Leishmania. Altogether, the findings provide strong evidence for meiosis-like sexual recombination in Leishmania, presenting clear opportunities for forward genetic analysis and positional cloning of important genes.
Asunto(s)
Genoma de Protozoos , Leishmania infantum/genética , Leishmania major/genética , Leishmania tropica/genética , Animales , Secuencia de Bases , Quimera , Mapeo Cromosómico , Cruzamientos Genéticos , Genotipo , Patrón de Herencia , Insectos Vectores/parasitología , Leishmania infantum/metabolismo , Leishmania major/metabolismo , Leishmania tropica/metabolismo , Meiosis , Psychodidae/parasitología , Recombinación Genética , Secuenciación Completa del GenomaRESUMEN
Background: The lack of complete protection against leishmaniasis and the challenges of anti-leishmaniasis drug treatment have made the treatment process more difficult. This study aimed to develop a new strategy for preparing a vaccine against cutaneous leishmaniasis using some of the antigenic proteins of the Leishmania parasite. Methods: This study was carried out in 2022 at Shahid Chamran University of Ahvaz, Ahvaz, Iran. After preparing suitable epitopes of the Leishmania parasite and examining their antiparasitic properties, the process of making a fusion vaccine was performed and with the help of various bioinformatics tools, physicochemical and structural properties as well as immunological and simulation properties were studied and finally optimized. Construction and cloning were performed in the E.coli K12 system and finally, the docking process was performed with Toll-like receptors (TLRs), major histocompatibility complex I (MHC-I), and MHC-II receptors. With the help of selected epitopes of the Leishmania parasite, which had a high percentage of population coverage, a stable, antigenic, and non-allergenic chimeric vaccine was predicted. Results: The results of the structural analysis of the TLR5\vaccine complex and simulation of its molecular dynamics showed a sufficiently stable binding. It also showed good potential for stimulation and production of active B cells and memory, as well as the potential for CD8+ T, CD4+ T cell production and development of Th2 and Th1-induced immune responses. Conclusion: Computational results showed that the designed immunogenic structure has the potential to adequately stimulate cellular and humoral immune responses against Leishmania parasitic disease. As a result of evaluating the effectiveness of the candidate vaccine through in vivo and in vitro immunological tests, it can be suggested as a vaccine against Leishmania major.
RESUMEN
BACKGROUND: Vector sand fly colonies are a critical component of studies aimed at improving the understanding of the neglected tropical disease leishmaniasis and alleviating its global impact. However, among laboratory-colonized arthropod vectors of infectious diseases, the labor-intensive nature of sand fly rearing coupled with the low number of colonies worldwide has generally discouraged the widespread use of sand flies in laboratory settings. Among the different factors associated with the low productivity of sand fly colonies, mite infestations are a significant factor. Sand fly colonies are prone to infestation by mites, and the physical interactions between sand flies and mites and metabolites have a negative impact on sand fly larval development. METHODS: Mites were collected from sand fly larval rearing pots and morphologically identified using taxonomic keys. Upon identification, they were photographed with a scanning electron microscope. Several mite control measures were adopted in two different laboratories, one at the Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases-National Institutes of Health (Rockville, MD, USA), and the other at the University of Calgary (Calgary, AB, Canada). RESULTS: The mite species associated with sand fly colonies in the two laboratories were morphologically identified as Tyrophagus sp. and Stratiolaelaps scimitus. While complete eradication of mites in sand fly colonies is considered unrealistic, drastically reducing their population has been associated with higher sand fly productivity. CONCLUSIONS: We report a case of detrimental interaction between sand flies and Tyrophagus sp. and S. scimitus in a closed laboratory sand fly colony, discuss their impact on sand fly production and provide guidelines for limiting the mite population size in a closed laboratory colony leading to improved sand fly yields.
Asunto(s)
Infestaciones por Ácaros , Ácaros , Phlebotomus , Psychodidae , Enfermedades Transmitidas por Vectores , Estados Unidos , Animales , LaboratoriosRESUMEN
BACKGROUND: Leishmaniasis is a parasitic disease caused by species of the genus Leishmania, which are transmitted through the bite of infected female sand flies. Since the first reported outbreak of cutaneous leishmaniasis in Ghana, in 1999, there has been limited published information on its vectors and reservoir hosts there. Previous studies have shown strong dominance of the sand fly genus Sergentomyia over the genus Phlebotomus in Ghana. Thus the aim of this study was to determine the possible sand fly vector species in Ghana, as well as their human-feeding behavior, from the time of the first reported outbreak of CL in the country. METHODS: Sand flies were collected from randomly selected houses in three communities. They were identified and used for blood meal source identification and the detection of Leishmania infection using molecular methods. RESULTS: A total of 1051 female sand flies were morphologically identified, of which Sergentomyia africana africana (29%) was the predominant species. Among the 275 female sand flies that had blood-fed, the identified blood meal sources included chicken (33.8%) and goat (12.4%); the percentage of human blood meals was 32%. Single-source and mixed-source blood meals were identified in Sergentomyia africana africana (11.6%), Sergentomyia ingrami (14.9%) and Sergentomyia simillima (20%), with S. simillima having the highest proportion of blood meals that included human blood (14.6%). Using molecular methods, unfed sand flies and identified human-feeding species were examined for the presence of Leishmania DNA. Pool screening analysis revealed three pools of S. ingrami positive for Leishmania major DNA, with an infection rate of 1.27% (95% confidence interval 2.467-3.647). CONCLUSIONS: The findings suggest that some Sergentomyia species may be involved in the transmission of cutaneous leishmaniasis in Ghana. However, the role of S. ingrami as a vector of leishmaniasis in Ghana needs to be conclusively validated by isolating the parasite from this species and through experimental transmission studies.
Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Leishmaniasis , Phlebotomus , Psychodidae , Animales , Femenino , Humanos , Phlebotomus/parasitología , Psychodidae/parasitología , Ghana/epidemiología , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/parasitología , Leishmaniasis/epidemiología , Brotes de Enfermedades , Leishmania major/genética , ADNRESUMEN
Leishmaniasis, caused by protozoan parasites of the Leishmania genus, represents an important health problem in many regions of the world. Lack of effective point-of-care (POC) diagnostic tests applicable in resources-limited endemic areas is a critical barrier to effective treatment and control of leishmaniasis. The development of the loop-mediated isothermal amplification (LAMP) assay has provided a new tool towards the development of a POC diagnostic test based on the amplification of pathogen DNA. LAMP does not require a thermocycler, is relatively inexpensive, and is simple to perform with high amplification sensitivity and specificity. In this review, we discuss the current technical developments, applications, diagnostic performance, challenges, and future of LAMP for molecular diagnosis and surveillance of Leishmania parasites. Studies employing the LAMP assay to diagnose human leishmaniasis have reported sensitivities of 80% to 100% and specificities of 94% to 100%. These observations suggest that LAMP offers a good molecular POC technique for the diagnosis of leishmaniasis and is also readily applicable to screening at-risk populations and vector sand flies for Leishmania infection in endemic areas.
Asunto(s)
Leishmaniasis/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , Animales , ADN Protozoario/genética , Bases de Datos Factuales , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Perros , Humanos , Leishmania/genética , Tamizaje Masivo/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Psychodidae/parasitología , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
Leishmaniasis remains one of the world's most neglected diseases, and early detection of the infectious agent, especially in developing countries, will require a simple and rapid test. In this study, we established a quick, one-step, single-tube, highly sensitive loop-mediated isothermal amplification (LAMP) assay for rapid detection of Leishmania DNA from tissue materials spotted on an FTA card. An FTA-LAMP with pre-added malachite green was performed at 64°C for 60min using a heating block and/or water bath and DNA amplification was detected immediately after incubation. The LAMP assay had high detection sensitivity down to a level of 0.01 parasites per µl. The field- and clinic-applicability of the colorimetric FTA-LAMP assay was demonstrated with 122 clinical samples collected from patients suspected of having cutaneous leishmaniasis in Peru, from which 71 positives were detected. The LAMP assay in combination with an FTA card described here is rapid and sensitive, as well as simple to perform, and has great potential usefulness for diagnosis and surveillance of leishmaniasis in endemic areas.
Asunto(s)
Colorimetría/métodos , Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/diagnóstico , Tamizaje Masivo/métodos , Colorantes de Rosanilina/análisis , Adulto , Femenino , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico , Perú , Sensibilidad y EspecificidadRESUMEN
Phlebotomine sand flies are the only proven vectors of leishmaniases, a group of human and animal diseases. Accurate knowledge of sand fly species identification is essential in understanding the epidemiology of leishmaniasis and vector control in endemic areas. Classical identification of sand fly species based on morphological characteristics often remains difficult and requires taxonomic expertise. Here, we generated DNA barcodes of the cytochrome c oxidase subunit 1 (COI) gene using 159 adult specimens morphologically identified to be 19 species of sand flies, belonging to 6 subgenera/species groups circulating in Peru, including the vector species. Neighbor-joining (NJ) analysis based on Kimura 2-Parameter genetic distances formed non-overlapping clusters for all species. The levels of intraspecific genetic divergence ranged from 0 to 5.96%, whereas interspecific genetic divergence among different species ranged from 8.39 to 19.08%. The generated COI barcodes could discriminate between all the sand fly taxa. Besides its success in separating known species, we found that DNA barcoding is useful in revealing population differentiation and cryptic diversity, and thus promises to be a valuable tool for epidemiological studies of leishmaniasis.
Asunto(s)
Código de Barras del ADN Taxonómico , Leishmaniasis/parasitología , Phlebotomus/clasificación , Phlebotomus/genética , Animales , Vectores de Enfermedades , Complejo IV de Transporte de Electrones/genética , Enfermedades Endémicas , Humanos , Leishmaniasis/transmisión , Datos de Secuencia Molecular , Perú , Phlebotomus/enzimologíaRESUMEN
Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries.
Asunto(s)
Entomología/métodos , Leishmania/aislamiento & purificación , Tamizaje Masivo/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Psychodidae/parasitología , Animales , Colorimetría/métodos , Ecuador , Leishmania/genética , ARN Ribosómico 18S/genética , Colorantes de Rosanilina/análisis , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
BACKGROUND: Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area. CONCLUSIONS/SIGNIFICANCE: The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic.