Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 586(7827): 101-107, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939092

RESUMEN

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Transcripción Genética
2.
PLoS Pathog ; 16(2): e1008343, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069324

RESUMEN

Neurotropic viral infections continue to pose a serious threat to human and animal wellbeing. Host responses combatting the invading virus in these infections often cause irreversible damage to the nervous system, resulting in poor prognosis. Rabies is the most lethal neurotropic virus, which specifically infects neurons and spreads through the host nervous system by retrograde axonal transport. The key pathogenic mechanisms associated with rabies infection and axonal transmission in neurons remains unclear. Here we studied the pathogenesis of different field isolates of lyssavirus including rabies using ex-vivo model systems generated with mouse primary neurons derived from the peripheral and central nervous systems. In this study, we show that neurons activate selective and compartmentalized degeneration of their axons and dendrites in response to infection with different field strains of lyssavirus. We further show that this axonal degeneration is mediated by the loss of NAD and calpain-mediated digestion of key structural proteins such as MAP2 and neurofilament. We then analysed the role of SARM1 gene in rabies infection, which has been shown to mediate axonal self-destruction during injury. We show that SARM1 is required for the accelerated execution of rabies induced axonal degeneration and the deletion of SARM1 gene significantly delayed axonal degeneration in rabies infected neurons. Using a microfluidic-based ex-vivo neuronal model, we show that SARM1-mediated axonal degeneration impedes the spread of rabies virus among interconnected neurons. However, this neuronal defense mechanism also results in the pathological loss of axons and dendrites. This study therefore identifies a potential host-directed mechanism behind neurological dysfunction in rabies infection. This study also implicates a novel role of SARM1 mediated axonal degeneration in neurotropic viral infection.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Rabia/fisiopatología , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/fisiología , Transporte Axonal/fisiología , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Modelos Animales de Enfermedad , Ganglios Espinales/virología , Lyssavirus/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/metabolismo , Neuritas/virología , Neuronas/metabolismo , Neuronas/virología , Rabia/metabolismo , Virus de la Rabia/metabolismo , Virus de la Rabia/patogenicidad
3.
Nat Methods ; 14(11): 1055-1062, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945704

RESUMEN

Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/citología , Diferenciación Celular , Fibroblastos/citología , Inestabilidad Genómica , Humanos , Factor 4 Similar a Kruppel
4.
Stem Cells ; 35(3): 626-640, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28009074

RESUMEN

The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas de la Membrana/inmunología , Células Madre Pluripotentes/metabolismo , Animales , Antígenos de Superficie/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Autorrenovación de las Células , Regulación hacia Abajo/genética , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Citometría de Flujo , Células Madre Hematopoyéticas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
5.
ACS Biomater Sci Eng ; 10(9): 5653-5665, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39133836

RESUMEN

Physiologically relevant in vitro models of the human outer retina are required to better elucidate the complex interplay of retinal tissue layers and investigate their role in retinal degenerative disorders. Materials currently used to mimic the function of Bruch's membrane fail to replicate a range of important structural, mechanical, and biochemical properties. Here, we detail the fabrication of a surface-functionalized, fibrous collagen I membrane. We demonstrate its ability to better replicate a range of important material properties akin to the function of human Bruch's membrane when compared with a commonly utilized synthetic polyethylene terephthalate alternative. We further reveal the ability of this membrane to support the culture of the ARPE-19 cell line, as well as human pluripotent stem cell-derived RPE-like cells and human umbilical vein endothelial cells. This material could provide greater physiological relevance to the native Bruch's membrane than current synthetic materials and further improve the outcomes of in vitro outer retinal models.


Asunto(s)
Lámina Basal de la Coroides , Colágeno Tipo I , Retina , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/química , Línea Celular , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Tereftalatos Polietilenos/química , Retina/citología , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos
6.
ACS Appl Mater Interfaces ; 14(40): 45124-45136, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173149

RESUMEN

Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.


Asunto(s)
Células-Madre Neurales , Silicio , Diferenciación Celular , Núcleo Celular , Humanos , Mecanotransducción Celular , Silicio/farmacología
7.
Viruses ; 14(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36366514

RESUMEN

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Pulmón , Antivirales/farmacología , Antivirales/uso terapéutico
8.
Acta Biomater ; 135: 64-86, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492374

RESUMEN

Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.


Asunto(s)
Regeneración Tisular Dirigida , Traumatismos de los Nervios Periféricos , Animales , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/terapia , Nervios Periféricos , Andamios del Tejido
9.
Front Cell Infect Microbiol ; 11: 783140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004351

RESUMEN

Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.


Asunto(s)
Exosomas , Lyssavirus , MicroARNs , Humanos , Lyssavirus/genética , Aprendizaje Automático , MicroARNs/genética , Neuronas , Células Madre
10.
Acta Biomater ; 104: 1-16, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945506

RESUMEN

Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.


Asunto(s)
Biomimética , Lámina Basal de la Coroides/citología , Comunicación Celular , Modelos Biológicos , Retina/citología , Fenómenos Biomecánicos , Humanos
11.
Acta Biomater ; 101: 102-116, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31610339

RESUMEN

This study investigates the utility of a tailored poly(ethylene glycol) diacrylate-crosslinked porous polymeric tissue engineering scaffold, with mechanical properties specifically optimised to be comparable to that of mammalian brain tissue for 3D human neural cell culture. Results obtained here demonstrate the attachment, proliferation and terminal differentiation of both human induced pluripotent stem cell- and embryonic stem cell-derived neural precursor cells (hPSC-NPCs) throughout the interconnected porous network within laminin-coated scaffolds. Phenotypic data and functional analyses are presented demonstrating that this material supports terminal in vitro neural differentiation of hPSC-NPCs to a mixed population of viable neuronal and glial cells for periods of up to 49 days. This is evidenced by the upregulation of TUBB3, MAP2, SYP and GFAP gene expression, as well as the presence of the proteins ßIII-TUBULIN, NEUN, MAP2 and GFAP. Functional maturity of neural cells following 49 days 3D differentiation culture was tested via measurement of intracellular calcium. These analyses revealed spontaneously active, synchronous and rhythmic calcium flux, as well as response to the neurotransmitter glutamate. This tailored construct has potential application as an improved in vitro human neurogenesis model with utility in platform drug discovery programs. STATEMENT OF SIGNIFICANCE: The interconnected porosity of polyHIPE scaffolds exhibits the ability to support three-dimensional neural cell network formation due to limited resistance to cellular migration and re-organisation. The previously developed scaffold material displays mechanical properties similar to that of the mammalian brain. This research also employs the utility of pluripotent stem cell-derived neural cells which are of greater clinical relevance than primary neural cell lines. This scaffold material has future potential in better mimicking three-dimensional neural networks found in the human brain and may result in improved in vitro models for disease modelling and drug screening applications.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Andamios del Tejido/química , Humanos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Porosidad
12.
Viruses ; 12(4)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218146

RESUMEN

Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.


Asunto(s)
Lyssavirus/fisiología , Neuronas/virología , Células Madre/citología , Células Madre/metabolismo , Animales , Apoptosis , Axones/metabolismo , Axones/virología , Biomarcadores , Calcio/metabolismo , Supervivencia Celular , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunohistoquímica , Ratones , Imagen Molecular , Virus de la Rabia/fisiología , Infecciones por Rhabdoviridae/virología
13.
Sci Rep ; 8(1): 701, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335618

RESUMEN

Synthetic human pluripotent stem cell (hPSC) culture surfaces with defined physical and chemical properties will facilitate improved research and therapeutic applications of hPSCs. In this study, synthetic surfaces for hPSC culture in E8 medium were produced for screening by modifying two polymer brush coatings [poly(acrylamide-co-acrylic acid) (PAAA) and poly(acrylamide-co-propargyl acrylamide) (PAPA)] to present single peptides. Adhesion of hPSC colonies was more consistently observed on surfaces modified with cRGDfK compared to surfaces modified with other peptide sequences tested. PAPA-coated polystyrene flasks with coupled cRGDfK (cRGDfK-PAPA) were then used for long-term studies of three hPSC lines (H9, hiPS-NHF1.3, Genea-02). Cell lines maintained for ten passages on cRGDfK-PAPA were assessed for colony morphology, proliferation rate, maintenance of OCT4 expression, cell viability at harvest, teratoma formation potential, and global gene expression as assessed by the PluriTest™ assay. cRGDfK-PAPA and control cultures maintained on Geltrex™ produced comparable results in most assays. No karyotypic abnormalities were detected in cultures maintained on cRGDfK-PAPA, while abnormalities were detected in cultures maintained on Geltrex™, StemAdhere™ or Synthemax™. This is the first report of long term maintenance of hPSC cultures on the scalable, stable, and cost-effective cRGDfK-PAPA coating.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Materiales Biocompatibles Revestidos , Péptidos Cíclicos , Células Madre Pluripotentes/fisiología , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Medios de Cultivo/química , Perfilación de la Expresión Génica , Humanos , Pase Seriado
14.
Acta Biomater ; 54: 1-20, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28259835

RESUMEN

Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE: Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Dispositivos Laboratorio en un Chip , Células-Madre Neurales/metabolismo , Andamios del Tejido/química , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Humanos , Hidrogeles/química , Tejido Nervioso/citología , Tejido Nervioso/metabolismo , Células-Madre Neurales/citología
15.
Methods Mol Biol ; 329: 353-69, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16846004

RESUMEN

The process of bringing a new pharmacologically active drug to market is laborious, time consuming, and costly. From drug discovery to safety assessment, new methods are constantly sought to develop faster and more efficient procedures to eliminate drugs from further investigation because of their limited effectiveness or high toxicity. Because in vitro cell assays are an important arm of this discovery process, it is therefore somewhat unsurprising that there is an emerging contribution of embryonic stem (ES) cell technology to this area. This technology utilizes the in vitro differentiation of ES cells into somatic cell target populations that, when coupled to the use of "lineage selection" protocols, allows for the production of infinite numbers of pure populations of the desired cells for both bioactivity and toxicological screens. Unlike the use of transformed cell lines, ES-derived cells remain karyotypically normal and therefore better reflect the potential responses of cells in vivo, and when selected are more homogeneous than those obtained using primary cultures. In this chapter we discuss the use of ES cell-derived somatic cells in pharmacological screens, with particular emphasis on neural cells, and describe the methods and protocols associated with the development of ES cell-derived neural cell assays.


Asunto(s)
Embrión de Mamíferos/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Medios de Cultivo , Proteínas de Unión al ADN/genética , Evaluación Preclínica de Medicamentos/métodos , Marcación de Gen , Genes Reporteros , Vectores Genéticos , Proteínas del Grupo de Alta Movilidad/genética , Ratones , Plásmidos/genética , Factores de Transcripción SOXB1
16.
Sci Rep ; 5: 13317, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26304831

RESUMEN

Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity.


Asunto(s)
Antígenos CD/metabolismo , Diferenciación Celular/fisiología , Lectinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Sialiltransferasas/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA