Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 514: 66-77, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851558

RESUMEN

The ways in which animals sense the world changes throughout development. For example, young of many species have limited visual capabilities, but still make social decisions, likely based on information gathered through other sensory modalities. Poison frog tadpoles display complex social behaviors that have been suggested to rely on vision despite a century of research indicating tadpoles have poorly-developed visual systems relative to adults. Alternatively, other sensory modalities, such as the lateral line system, are functional at hatching in frogs and may guide social decisions while other sensory systems mature. Here, we examined development of the mechanosensory lateral line and visual systems in tadpoles of the mimic poison frog (Ranitomeya imitator) that use vibrational begging displays to stimulate egg feeding from their mothers. We found that tadpoles hatch with a fully developed lateral line system. While begging behavior increases with development, ablating the lateral line system inhibited begging in pre-metamorphic tadpoles, but not in metamorphic tadpoles. We also found that the increase in begging and decrease in reliance on the lateral line co-occurs with increased retinal neural activity and gene expression associated with eye development. Using the neural tracer neurobiotin, we found that axonal innervations from the eye to the brain proliferate during metamorphosis, with few retinotectal connections in recently-hatched tadpoles. We then tested visual function in a phototaxis assay and found tadpoles prefer darker environments. The strength of this preference increased with developmental stage, but eyes were not required for this behavior, possibly indicating a role for the pineal gland. Together, these data suggest that tadpoles rely on different sensory modalities for social interactions across development and that the development of sensory systems in socially complex poison frog tadpoles is similar to that of other frog species.

2.
Proc Natl Acad Sci U S A ; 119(44): e2210114119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279441

RESUMEN

American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.


Asunto(s)
Neurotoxinas , Saxitoxina , Animales , Saxitoxina/genética , Ligandos , Guanidina , Proteínas Portadoras/metabolismo , Rana catesbeiana
3.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37791477

RESUMEN

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Asunto(s)
Opsinas , Venenos , Animales , Opsinas/genética , Filogenia , Opsinas de Bastones/genética
4.
Nature ; 558(7710): 445-448, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899448

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour1,2. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.


Asunto(s)
Evolución Biológica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Melanocitos/citología , Melanocitos/efectos de la radiación , Nicho de Células Madre/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Organismos Acuáticos/clasificación , Citoprotección/efectos de la radiación , Daño del ADN/efectos de la radiación , Riñón , Mutación , Petromyzon/clasificación , Filogenia , Dímeros de Pirimidina/efectos de la radiación , Nicho de Células Madre/fisiología , Pez Cebra/clasificación , Pez Cebra/genética
5.
Horm Behav ; 140: 105109, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066329

RESUMEN

Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.


Asunto(s)
Lagartos , Agresión/fisiología , Animales , Humanos , Lagartos/fisiología , Masculino , Mamíferos/metabolismo , Conducta Social , Vasopresinas , Vasotocina/metabolismo
6.
J Exp Biol ; 225(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34940881

RESUMEN

Many animals exhibit complex navigation over different scales and environments. Navigation studies in amphibians have largely focused on species with life histories that require accurate spatial movements, such as territorial poison frogs and migratory pond-breeding amphibians that show fidelity to mating sites. However, other amphibian species have remained relatively understudied, leaving open the possibility that well-developed navigational abilities are widespread. Here, we measured short-term space use in non-territorial, non-migratory cane toads (Rhinella marina) in their native range in French Guiana. After establishing site fidelity, we tested their ability to return home following translocations of 500 and 1000 m. Toads were able to travel in straight trajectories back to home areas, suggesting navigational abilities similar to those observed in amphibians with more complex spatial behavior. These observations break with the current paradigm of amphibian navigation and suggest that navigational abilities may be widely shared among amphibians.


Asunto(s)
Anfibios , Conducta Espacial , Animales , Bufo marinus
7.
Proc Natl Acad Sci U S A ; 116(4): 1331-1336, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30617061

RESUMEN

Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. We find that, while evolutionary divergence time between species or clades did not explain gene expression similarity, characteristics of the mating system correlated with neural gene expression patterns, and neural gene expression varied concordantly across vertebrates when species transition to monogamy. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.


Asunto(s)
Transcriptoma/genética , Vertebrados/genética , Animales , Anuros/genética , Arvicolinae/genética , Encéfalo/fisiología , Cíclidos/genética , Expresión Génica/genética , Masculino , Ratones , Apareamiento , Peromyscus/genética , Filogenia , Reproducción/genética , Conducta Sexual Animal/fisiología , Pájaros Cantores/genética , Especificidad de la Especie
8.
Horm Behav ; 133: 105007, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34102460

RESUMEN

Within populations, some individuals tend to exhibit a bold or shy social behavior phenotype relative to the mean. The neural underpinnings of these differing phenotypes - also described as syndromes, personalities, and coping styles - is an area of ongoing investigation. Although a social decision-making network has been described across vertebrate taxa, most studies examining activity within this network do so in relation to exhibited differences in behavioral expression. Our study instead focuses on constitutive gene expression in bold and shy individuals by isolating baseline gene expression profiles that influence social boldness predisposition, rather than those reflecting the results of social interaction and behavioral execution. We performed this study on male green anole lizards (Anolis carolinensis), an established model organism for behavioral research, which provides a crucial comparison group to investigations of birds and mammals. After identifying subjects as bold or shy through repeated reproductive and agonistic behavior testing, we used RNA sequencing to compare gene expression profiles between these groups within various forebrain, midbrain, and hindbrain regions. The ventromedial hypothalamus had the largest group differences in gene expression, with bold males having increased expression of neuroendocrine and neurotransmitter receptor and calcium channel genes compared to shy males. Conversely, shy males express more integrin alpha-10 in the majority of examined regions. There were no significant group differences in physiology or hormone levels. Our results highlight the ventromedial hypothalamus as an important center of behavioral differences across individuals and provide novel candidates for investigations into the regulation of individual variation in social behavior phenotype.


Asunto(s)
Lagartos , Animales , Expresión Génica , Humanos , Hipotálamo , Lagartos/genética , Masculino , Prosencéfalo , Conducta Social
9.
J Exp Biol ; 224(Pt 3)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33408255

RESUMEN

Poison frogs sequester chemical defenses from their diet of leaf litter arthropods for defense against predation. Little is known about the physiological adaptations that confer this unusual bioaccumulation ability. We conducted an alkaloid-feeding experiment with the Diablito poison frog (Oophaga sylvatica) to determine how quickly alkaloids are accumulated and how toxins modify frog physiology using quantitative proteomics. Diablito frogs rapidly accumulated the alkaloid decahydroquinoline within 4 days, and dietary alkaloid exposure altered protein abundance in the intestines, liver and skin. Many proteins that increased in abundance with decahydroquinoline accumulation are plasma glycoproteins, including the complement system and the toxin-binding protein saxiphilin. Other protein classes that change in abundance with decahydroquinoline accumulation are membrane proteins involved in small molecule transport and metabolism. Overall, this work shows that poison frogs can rapidly accumulate alkaloids, which alter carrier protein abundance, initiate an immune response, and alter small molecule transport and metabolism dynamics across tissues.


Asunto(s)
Artrópodos , Venenos , Toxinas Biológicas , Animales , Anuros , Conducta Predatoria , Toxinas Biológicas/toxicidad
10.
Proc Biol Sci ; 287(1929): 20200239, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32576103

RESUMEN

Animals display remarkable variation in social behaviour. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e. pair bonding versus solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin (OTR), arginine vasopressin (V1aR), dopamine (D1R, D2R) and mu-opioid (MOR). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR,V1aR, D1R, D2R and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair-bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair-bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine and opioid signalling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.


Asunto(s)
Expresión Génica , Perciformes/fisiología , Conducta Social , Animales , Arrecifes de Coral , Perciformes/genética , Telencéfalo , Vasopresinas
11.
Horm Behav ; 126: 104869, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33039350

RESUMEN

Variation in natural behavior is tightly linked to the ecological resources with which they co-evolved. This review discusses poison frog behavior and neuroendocrinology to illustrate how ecological factors drive diversification of behavior and its underlying neural mechanisms. Poison frogs show tremendous diversity in reproductive strategies that are tightly linked to water resources in their environment. Different species utilize particular pool sizes to rear their offspring, which has selected for sex differences in parental behavior among poison frog species. Tadpole behavior reflects the behavioral diversity of adults, where tadpoles can display social group living or violent aggression and begging behavior, which are all associated with pool size and occupancy. Using this behavioral diversity among poison frog species, we have identified core brain regions, like the hippocampus and preoptic area, as being involved in regulating different aspects of amphibian parental behavior. In contrast to core brain regions, the neuromodulators governing these behaviors seem to be more labile across species. This work exemplifies how comparative studies are a prime experimental system to study how evolution tunes neural circuits that give rise to the diversity of behaviors we observe in the natural world. Finally, this review ends on a more important form of diversity - that of our scientific community - and how community outreach, decolonization of field based science, and inclusion of groups historically excluded from conducting research are needed for the scientific enterprise to transform into something truly beneficial for all members of our society.


Asunto(s)
Anuros/fisiología , Conducta Animal/fisiología , Ecosistema , Venenos/metabolismo , Agresión/fisiología , Animales , Anuros/clasificación , Anuros/metabolismo , Distinciones y Premios , Encéfalo/anatomía & histología , Encéfalo/fisiología , Femenino , Larva/fisiología , Masculino , Reproducción/fisiología
12.
Horm Behav ; 120: 104696, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31987899

RESUMEN

The occasional reversal of sex-typical behavior suggests that many of the neural circuits underlying behavior are conserved between males and females and can be activated in response to the appropriate social condition or stimulus. Most poison frog species (Family Dendrobatidae) exhibit male uniparental care, but flexible compensation has been observed in some species, where females will take over parental care duties when males disappear. We investigated hormonal and neural correlates of sex-typical and sex-reversed parental care in a typically male uniparental species, the Dyeing Poison Frog (Dendrobates tinctorius). We first characterized hormone levels and whole brain gene expression across parental care stages during sex-typical care. Surprisingly, hormonal changes and brain gene expression differences associated with active parental behavior in males were mirrored in their non-caregiving female partners. To further explore the disconnect between neuroendocrine patterns and behavior, we characterized hormone levels and neural activity patterns in females performing sex-reversed parental care. In contrast to hormone and gene expression patterns, we found that patterns of neural activity were linked to the active performance of parental behavior, with sex-reversed tadpole transporting females exhibiting neural activity patterns more similar to those of transporting males than non-caregiving females. We suggest that parallels in hormones and brain gene expression in active and observing parents are related to females' ability to flexibly take over parental care in the absence of their male partners.


Asunto(s)
Anuros/fisiología , Encéfalo/fisiología , Hormonas/metabolismo , Comportamiento de Nidificación/fisiología , Plasticidad Neuronal/fisiología , Animales , Conducta Animal/fisiología , Femenino , Expresión Génica , Larva , Masculino , Conducta Materna/fisiología , Sistemas Neurosecretores/fisiología , Conducta Paterna/fisiología , Factores Sexuales
13.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034050

RESUMEN

Neuroscience has a long, rich history in embracing unusual animals for research. Over the past several decades, there has been a technology-driven bottleneck in the species used for neuroscience research. However, an oncoming wave of technologies applicable to many animals hold promise for enabling researchers to address challenging scientific questions that cannot be solved using traditional laboratory animals. Here, we discuss how leveraging the convergent evolution of physiological or behavioral phenotypes can empower research mapping genotype to phenotype interactions. We present two case studies using electric fish and poison frogs and discuss how comparative work can teach us about evolutionary constraint and flexibility at various levels of biological organization. We also offer advice on the potential and pitfalls of establishing novel model systems in neuroscience research. Finally, we end with a discussion on the use of charismatic animals in neuroscience research and their utility in public outreach. Overall, we argue that convergent evolution frameworks can help identify generalizable principles of neuroscience.


Asunto(s)
Pez Eléctrico , Animales , Anuros , Evolución Biológica , Genotipo , Modelos Biológicos , Fenotipo
14.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034043

RESUMEN

The use of CRISPR/Cas9 for gene editing offers new opportunities for biology students to perform genuine research exploring the gene-to-phenotype relationship. It is important to introduce the next generation of scientists, health practitioners and other members of society to the technical and ethical aspects of gene editing. Here, we share our experience leading hands-on undergraduate laboratory classes, where students formulate hypotheses regarding the roles of candidate genes involved in development, perform loss-of-function experiments using programmable nucleases and analyze the phenotypic effects of mosaic mutant animals. This is enabled by the use of the amphibian Xenopus laevis and the butterfly Vanessa cardui, two organisms that reliably yield hundreds of large and freshly fertilized eggs in a scalable manner. Frogs and butterflies also present opportunities to teach key biological concepts about gene regulation and development. To complement these practical aspects, we describe learning activities aimed at equipping students with a broad understanding of genome editing techniques, their application in fundamental and translational research, and the bioethical challenges they raise. Overall, our work supports the introduction of CRISPR technology into undergraduate classrooms and, when coupled with classroom undergraduate research experiences, enables hypothesis-driven research by undergraduates.


Asunto(s)
Mariposas Diurnas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Laboratorios , Estudiantes
15.
Proc Biol Sci ; 286(1907): 20191084, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31311480

RESUMEN

Parental care has evolved repeatedly and independently across animals. While the ecological and evolutionary significance of parental behaviour is well recognized, underlying mechanisms remain poorly understood. We took advantage of behavioural diversity across closely related species of South American poison frogs (Family Dendrobatidae) to identify neural correlates of parental behaviour shared across sexes and species. We characterized differences in neural induction, gene expression in active neurons and activity of specific neuronal types in three species with distinct care patterns: male uniparental, female uniparental and biparental. We identified the medial pallium and preoptic area as core brain regions associated with parental care, independent of sex and species. The identification of neurons active during parental care confirms a role for neuropeptides associated with care in other vertebrates as well as identifying novel candidates. Our work is the first to explore neural and molecular mechanisms of parental care in amphibians and highlights the potential for mechanistic studies in closely related but behaviourally variable species to help build a more complete understanding of how shared principles and species-specific diversity govern parental care and other social behaviour.


Asunto(s)
Anuros/fisiología , Evolución Biológica , Conducta Materna , Neuronas/fisiología , Conducta Paterna , Animales , Anuros/genética , Expresión Génica/fisiología , Larva , Área Preóptica/fisiología , Especificidad de la Especie
16.
J Exp Biol ; 222(Pt 12)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31138640

RESUMEN

Poison frogs sequester small molecule lipophilic alkaloids from their diet of leaf litter arthropods for use as chemical defenses against predation. Although the dietary acquisition of chemical defenses in poison frogs is well documented, the physiological mechanisms of alkaloid sequestration has not been investigated. Here, we used RNA sequencing and proteomics to determine how alkaloids impact mRNA or protein abundance in the little devil frog (Oophaga sylvatica), and compared wild-caught chemically defended frogs with laboratory frogs raised on an alkaloid-free diet. To understand how poison frogs move alkaloids from their diet to their skin granular glands, we focused on measuring gene expression in the intestines, skin and liver. Across these tissues, we found many differentially expressed transcripts involved in small molecule transport and metabolism, as well as sodium channels and other ion pumps. We then used proteomic approaches to quantify plasma proteins, where we found several protein abundance differences between wild and laboratory frogs, including the amphibian neurotoxin binding protein saxiphilin. Finally, because many blood proteins are synthesized in the liver, we used thermal proteome profiling as an untargeted screen for soluble proteins that bind the alkaloid decahydroquinoline. Using this approach, we identified several candidate proteins that interact with this alkaloid, including saxiphilin. These transcript and protein abundance patterns suggest that the presence of alkaloids influences frog physiology and that small molecule transport proteins may be involved in toxin bioaccumulation in dendrobatid poison frogs.


Asunto(s)
Alcaloides/metabolismo , Anuros/fisiología , Proteínas Sanguíneas/metabolismo , Expresión Génica , Toxinas Biológicas/fisiología , Alcaloides/administración & dosificación , Animales , Anuros/sangre , Anuros/genética , Dieta , Femenino , Intestinos , Hígado/metabolismo , Masculino , Proteómica , Piel/metabolismo , Toxinas Biológicas/biosíntesis
17.
Mol Phylogenet Evol ; 125: 40-50, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29551526

RESUMEN

Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin, where most toxins are stored.


Asunto(s)
Anuros/genética , Anuros/parasitología , Perfilación de la Expresión Génica , Parásitos/fisiología , Animales , Biodiversidad , Especiación Genética , Interacciones Huésped-Parásitos/genética , Filogenia , Venenos , Especificidad de la Especie , Transcriptoma/genética
18.
Mol Biol Evol ; 33(4): 1068-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26782998

RESUMEN

Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses.


Asunto(s)
Alcaloides/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Filogenia , Venenos/química , Alcaloides/química , Alcaloides/clasificación , Alcaloides/metabolismo , Venenos de Anfibios/química , Venenos de Anfibios/genética , Venenos de Anfibios/metabolismo , Animales , Anuros/genética , Batracotoxinas/química , Batracotoxinas/genética , Batracotoxinas/metabolismo , Sitios de Unión , Estudios de Asociación Genética , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Venenos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Piel/química , Piel/efectos de los fármacos
19.
J Exp Biol ; 220(Pt 1): 92-102, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057832

RESUMEN

Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.


Asunto(s)
Conducta Apetitiva , Evolución Biológica , Conducta Alimentaria , Conducta Social , Animales , Encéfalo/fisiología , Red Nerviosa , Vías Nerviosas , Hormonas Peptídicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA