Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138452

RESUMEN

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Asunto(s)
Proteínas de Plantas , Raphanus , Humanos , Proteínas de Plantas/farmacología , Proteínas de Plantas/metabolismo , Leucocitos Mononucleares/metabolismo , Factor de Transferencia , Plantas/metabolismo , Planta de la Mostaza/metabolismo
2.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764336

RESUMEN

HMGB1 is a key late inflammatory mediator upregulated during air-pollution-induced oxidative stress. Extracellular HMGB1 accumulation in the airways and lungs plays a significant role in the pathogenesis of inflammatory lung injury. Decreasing extracellular HMBG1 levels may restore innate immune cell functions to protect the lungs from harmful injuries. Current therapies for air-pollution-induced respiratory problems are inadequate. Dietary antioxidants from natural sources could serve as a frontline defense against air-pollution-induced oxidative stress and lung damage. Here, a standardized botanical antioxidant composition from Scutellaria baicalensis and Acacia catechu was evaluated for its efficacy in attenuating acute inflammatory lung injury and sepsis. Murine models of disorders, including hyperoxia-exposed, bacterial-challenged acute lung injury, LPS-induced sepsis, and LPS-induced acute inflammatory lung injury models were utilized. The effect of the botanical composition on phagocytic activity and HMGB1 release was assessed using hyperoxia-stressed cultured macrophages. Analyses, such as hematoxylin-eosin (HE) staining for lung tissue damage evaluation, ELISA for inflammatory cytokines and chemokines, Western blot analysis for proteins, including extracellular HMGB1, and bacterial counts in the lungs and airways, were performed. Statistically significant decreases in mortality (50%), proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and chemokines (CINC-3) in serum and bronchoalveolar lavage fluid (BALF), and increased bacterial clearance from airways and lungs; reduced airway total protein, and decreased extracellular HMGB1 were observed in in vivo studies. A statistically significant 75.9% reduction in the level of extracellular HMGB1 and an increase in phagocytosis were observed in cultured macrophages. The compilations of data in this report strongly suggest that the botanical composition could be indicated for oxidative-stress-induced lung damage protection, possibly through attenuation of increased extracellular HMGB1 accumulation.


Asunto(s)
Lesión Pulmonar Aguda , Proteína HMGB1 , Hiperoxia , Animales , Ratones , Lipopolisacáridos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Citocinas , Antioxidantes/farmacología
3.
Nutrients ; 16(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39339746

RESUMEN

Oxidative stress and chronic inflammation create a perpetual cycle in the elderly, where impaired immune function amplifies susceptibility to oxidative damage, and oxidative stress further weakens the immune response. This cycle is particularly detrimental to the respiratory system of the elderly, which is an easy target for constant exogenous harmful attacks during cold/flu season or under heavy air pollution. Herbal medicines that protect respiratory function are seen as safer alternatives to conventional therapies; however, there is limited availability of scientifically validated, safe, and effective natural supplements for these conditions. In this study, we evaluated a standardized bioflavonoid composition, UP446, that contains bioactives from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu as a natural and nutritional supplement for its antioxidative and immunoregulatory effects in oxidative stress-accelerated aging and chemically induced immune suppression mouse models. Immunosenescence was induced through the repeated subcutaneous inoculation of D-galactose (D-Gal) at a dose of 500 mg/kg/day in CD-1 mice. UP446 was administered orally at doses of 100 mg/kg and 200 mg/kg starting in the fifth week of immunosenescence induction. This study lasted a total of ten weeks. All mice received a quadrivalent influenza vaccine 2 weeks before termination. Whole blood, serum, spleen homogenate, and thymus tissues were processed for analysis. Cyclophosphamide (Cy)-induced immunosuppression was triggered by three consecutive injections of cyclophosphamide at 80 mg/kg/day, followed by the oral administration of UP446 for 18 days at doses of 100 mg/kg and 200 mg/kg. Blood was collected from each animal at necropsy, and serum was isolated for IgA and IgG ELISA analysis. UP446 was found to improve immune response, as evidenced by the stimulation of innate (NK cells) and adaptive immune responses (T cells and cytotoxic T cells), an increase in antioxidant capacity (glutathione peroxidase), the preservation of vital immune organs (the thymus), and a reduction in NFκB. UP446 also increased serum levels of IgA and IgG. The findings presented in this report demonstrate the antioxidative, anti-inflammatory, and immune-regulatory activities of UP446, suggesting its potential use in respiratory conditions involving immune stress due to aging, oxidative stress, and/or pathogenic challenges.


Asunto(s)
Acacia , Antioxidantes , Ciclofosfamida , Galactosa , Inmunosenescencia , Extractos Vegetales , Scutellaria baicalensis , Animales , Scutellaria baicalensis/química , Acacia/química , Ratones , Extractos Vegetales/farmacología , Inmunosenescencia/efectos de los fármacos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Flavonoides/farmacología , Masculino
4.
J Immunol Res ; 2024: 9307906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516617

RESUMEN

A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.


Asunto(s)
Aloe , Inmunosenescencia , Humanos , Ratones , Animales , Anciano , Galactosa/farmacología , Polifenoles/farmacología , Envejecimiento , Polisacáridos/farmacología , Estrés Oxidativo
5.
Geroscience ; 46(6): 6195-6212, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38822124

RESUMEN

The extent to which the neural systems underlying semantic processes degrade with advanced age remains unresolved, which motivated the current study of neural activation on functional magnetic resonance imaging (fMRI) during semantic judgments of associated vs. unassociated, semantic vs. rhyme, and abstract vs. rhyme word pairs. Thirty-eight older adults, 55-85 years of age, performed semantic association decision tasks in a mixed event-related block fMRI paradigm involving binary judgments as to whether word pairs were related (i.e., semantically associated). As hypothesized, significantly greater activation was evident during processing of associated (vs. unassociated) word pairs in cortical areas implicated in semantic processing, including the angular gyrus, temporal cortex, and inferior frontal cortex. Cortical areas showed greater activation to unassociated (vs. associated) word pairs, primarily within a large occipital cluster. Greater activation was evident in cortical areas when response to semantic vs. phonemic word pairs. Contrasting activation during abstract vs. concrete semantic processing revealed areas of co-activation to both semantic classes, and areas that had greater response to either abstract or concrete word pairs. Neural activation across conditions did not vary as a function of greater age, indicating only minimal age-associated perturbation in neural activation during semantic processing. Therefore, the response of the semantic hubs, semantic control, and secondary association areas appear to be largely preserved with advanced age among older adults exhibiting successful cognitive aging. These findings may provide a useful clinical contrast if compared to activation among adults experiencing cognitive decline due Alzheimer's, frontal-temporal dementia, and other neurodegenerative diseases.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Semántica , Humanos , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Persona de Mediana Edad , Mapeo Encefálico/métodos , Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
6.
J Med Food ; 26(7): 489-499, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37192488

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated and unbalanced immune response to microbial infection. Restoring immune homeostasis and infection control are considered the primary strategies to manage sepsis. Natural bioactives such as polysaccharide and polyphenols from botanicals are known for their immune modulation activity. In this study, we evaluated a standardized aloe-based composition, UP360 (constitute of polysaccharides from Aloe barbadense and Poria cocos and polyphenols from Rosemary officinalis) in lipopolysaccharide (LPS)-induced sepsis and acute inflammatory lung injury murine models. Prophylactic oral administration of UP360 for 7 days at an oral dose of 500 mg/kg improved the survival rate of mice by 62.5%, whereas all mice in the vehicle control group were deceased 82 h after LPS injection. The merit of combining these traditional herbs to yield the standardized composition UP360 was also demonstrated in this model with a mortality rate of only 30.8%, whereas 76.9%, 53.9%, and 61.5% were recorded for each individual constituents A. barbadense, P. cocos, and R. officinalis, respectively. Dose-correlated statistically significant reductions in proinflammatory cytokines and chemokine tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-3 were observed for UP360 when administered at 250 and 500 mg/kg orally for 7 days before induction of acute lung injury (ALI) model in rats. The histopathology data from lung showed statistically significant 37.9% and 37% reductions in the overall lung damage severity and pulmonary edema, respectively, for UP360-treated rats. The aloe-based composition UP360 effectively improved the survival rate of septic animals and mitigated the severity of LPS-induced ALI in vivo. These data warrant further investigation of the composition for a potential application in human as an adjunct supplement in respiratory distress and sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Aloe , Rosmarinus , Sepsis , Wolfiporia , Humanos , Ratones , Ratas , Animales , Lipopolisacáridos/efectos adversos , Modelos Animales de Enfermedad , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Pulmón , Citocinas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Sepsis/tratamiento farmacológico , Polifenoles/efectos adversos
7.
Front Neurosci ; 17: 1184051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575296

RESUMEN

Evidence for clinically meaningful benefits of transcutaneous vagus nerve stimulation (VNS) has been rapidly accumulating over the past 15 years. This relatively novel non-invasive brain stimulation technique has been applied to a wide range of neuropsychiatric disorders including schizophrenia, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder, bipolar disorder, and Alzheimer's disease. More recently, non-invasive forms of VNS have allowed for investigations within healthy aging populations. These results offer insight into protocol considerations specific to older adults and how to translate those results into effective clinical trials and, ultimately, effective clinical care. In this review, we characterize the possible mechanisms by which non-invasive VNS may promote healthy aging (e.g., neurotransmitter effects, inflammation regulation, functional connectivity changes), special considerations for applying non-invasive VNS in an older adult population (e.g., vagus nerve changes with age), and how non-invasive VNS may be used in conjunction with existing behavioral interventions (e.g., cognitive behavioral therapy, cognitive training) to promote healthy emotional and cognitive aging.

8.
Neurotherapeutics ; 20(2): 419-430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477709

RESUMEN

Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain's primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test - Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n = 25) or sham control conditions (left ear lobe, n = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.


Asunto(s)
Disfunción Cognitiva , Estimulación del Nervio Vago , Humanos , Femenino , Estimulación del Nervio Vago/métodos , Semántica , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipocampo , Nervio Vago/fisiología , Disfunción Cognitiva/terapia
9.
J Med Food ; 24(9): 960-967, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33570460

RESUMEN

Symptom-alleviating therapies for osteoarthritis (OA) management are inadequate. Long-term application of first-line treatments, such as nonsteroidal anti-inflammatory drugs, is limited due to associated side effects. We believe that a combination of traditionally used botanical extracts, which have diverse active components that target multiple inflammatory pathways, may provide a safe and efficacious alternative to address the multifactorial nature of OA. Recently, cannabidiol (CBD), the major nonpsychoactive component of the hemp plant, has gained renewed global attention for its pharmacological actions. It has shown promise in reducing pain and inflammation in preclinical models of arthritis. In this study, widely employed inflammatory and noninflammatory animal pain models, such as the hot plate test, visceral pain model (writhing test), and carrageenan-induced rat paw edema model, were utilized to evaluate the antinociceptive and anti-inflammatory activity of CBD alone and in combination with standardized bioflavonoid compositions. CBD was tested at 5, 10, 20, and 40 mg/kg orally and at 5% topically. Administered alone, CBD produced dose-correlated, statistically significant pain inhibition in all the models. Enhanced performance in pain and inflammation reduction was observed when CBD was orally administered in complex with the bioflavonoid compositions. Data from this study show that for clinically meaningful efficacy against OA, CBD may have to be delivered in higher dosage or formulated with other medicinal plants with similar activities.


Asunto(s)
Cannabidiol , Analgésicos , Animales , Antiinflamatorios/uso terapéutico , Cannabidiol/uso terapéutico , Carragenina , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Flavonoides/uso terapéutico , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Ratas
10.
Neuropsychologia ; 147: 107585, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32841632

RESUMEN

We examined the performance of an individual with subcortical damage, but an intact somatosensory thalamocortical pathway, to examine the functional architecture of tactile detection and tactile localization processes. Consistent with the intact somatosensory thalamocortical pathway, tactile detection on the contralesional hand was well within the normal range. Despite intact detection, the individual demonstrated substantial localization biases. Across all localization experiments, he consistently localized tactile stimuli to the left side in space relative to the long axis of his hand. This was observed when the contralesional hand was palm up, palm down, rotated 90° relative to the trunk, and when making verbal responses. Furthermore, control experiments demonstrated that this response pattern was unlikely a motor response error. These findings indicate that tactile localization on the body is influenced by proprioceptive information specifically in a hand-centered frame of reference. Furthermore, this also provides evidence that aspects of tactile localization are mediated by pathways outside of the primary somatosensory thalamocortical pathway.


Asunto(s)
Mano , Percepción del Tacto , Humanos , Masculino , Propiocepción , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA