Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892038

RESUMEN

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Asunto(s)
Antígeno B7-H1 , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas , Melanoma Experimental , Melanoma , N-Acetilgalactosamina-4-Sulfatasa , Animales , Humanos , Ratones , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , N-Acetilgalactosamina-4-Sulfatasa/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Línea Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Galectina 3/metabolismo , Galectina 3/genética , Regiones Promotoras Genéticas , Proteínas Sanguíneas , Galectinas
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292950

RESUMEN

Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization.


Asunto(s)
Factor de Crecimiento Nervioso , Osteoartritis , Ratones , Animales , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Tropomiosina/metabolismo , Hiperalgesia/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Receptoras Sensoriales/metabolismo , Dolor/metabolismo , Ganglios Espinales/metabolismo , Osteoartritis/metabolismo , Tamoxifeno/metabolismo
3.
J Biol Chem ; 294(3): 1059-1069, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30459233

RESUMEN

FoxO proteins are major targets of insulin action, and FoxO1 mediates the effects of insulin on hepatic glucose metabolism. We reported previously that serpinB1 is a liver-secreted factor (hepatokine) that promotes adaptive ß-cell proliferation in response to insulin resistance in the liver-specific insulin receptor knockout (LIRKO) mouse. Here we report that FoxO1 plays a critical role in promoting serpinB1 expression in hepatic insulin resistance in a non-cell-autonomous manner. Mice lacking both the insulin receptor and FoxO1 (LIRFKO) exhibit reduced ß-cell mass compared with LIRKO mice because of attenuation of ß-cell proliferation. Although hepatic expression of serpinB1 mRNA and protein levels was increased in LIRKO mice, both the mRNA and protein levels returned to control levels in LIRFKO mice. Furthermore, liver-specific expression of constitutively active FoxO1 in transgenic mice induced an increase in hepatic serpinB1 mRNA and protein levels in refed mice. Conversely, serpinB1 mRNA and protein levels were reduced in mice lacking FoxO proteins in the liver. ChIP studies demonstrated that FoxO1 binds to three distinct sites located ∼9 kb upstream of the serpinb1 gene in primary mouse hepatocytes and that this binding is enhanced in hepatocytes from LIRKO mice. However, adenoviral expression of WT or constitutively active FoxO1 and insulin treatment are sufficient to regulate other FoxO1 target genes (IGFBP-1 and PEPCK) but not serpinB1 expression in mouse primary hepatocytes. These results indicate that liver FoxO1 promotes serpinB1 expression in hepatic insulin resistance and that non-cell-autonomous factors contribute to FoxO1-dependent effects on serpinB1 expression in the liver.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hígado/metabolismo , Serpinas/biosíntesis , Animales , Proteína Forkhead Box O1/genética , Hepatocitos/citología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Serpinas/genética
4.
J Cell Physiol ; 235(6): 5305-5317, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31875985

RESUMEN

Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.


Asunto(s)
Disco Intervertebral/metabolismo , Dolor de la Región Lumbar/genética , Vértebras Lumbares/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica/genética , Humanos , Disco Intervertebral/lesiones , Disco Intervertebral/patología , Dolor de la Región Lumbar/patología , Vértebras Lumbares/lesiones , Vértebras Lumbares/patología , Ratones , Dimensión del Dolor , Transducción de Señal/genética
5.
J Cell Physiol ; 233(10): 6589-6602, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29150945

RESUMEN

Discogenic low back pain (DLBP) is extremely common and costly. Effective treatments are lacking due to DLBP's unknown pathogenesis. Currently, there are no in vivo mouse models of DLBP, which restricts research in this field. The aim of this study was to establish a reliable DLBP model in mouse that captures the pathological changes in the disc and allows longitudinal pain testing. The model was generated by puncturing the mouse lumbar discs (L4/5, L5/6, and L6/S1) and removing the nucleus pulposus using a microscalpel under the microscope. Histology, molecular pathways, and pain-related behaviors were examined. Over 12 weeks post-surgery, animals displayed the mechanical, heat, and cold hyperalgesia along with decreased burrowing and rearing. Histology showed progressive disc degeneration with loss of disc height, nucleus pulposus reduction, proteoglycan depletion, and annular fibrotic disorganization. Immunohistochemistry revealed a substantial increase in inflammatory mediators at 2 and 4 weeks. Nerve growth factor was upregulated from 2 weeks to the end of the experiment. Nerve fiber ingrowth was induced in the injured discs after 4 weeks. Disc-puncture also produced an upregulation of neuropeptides in dorsal root ganglia neurons and an activation of glial cells in the spinal cord dorsal horn. These findings indicate that the cellular and structural changes in discs, as well as peripheral and central nervous system plasticity, paralleled persistent, and robust behavioral pain responses. Therefore, this mouse DLBP model could be used to investigate mechanisms underlying discogenic pain, thereby facilitating effective drug screening and development of treatments for DLBP.


Asunto(s)
Degeneración del Disco Intervertebral/fisiopatología , Dolor de la Región Lumbar/fisiopatología , Asta Dorsal de la Médula Espinal/fisiopatología , Punción Espinal , Animales , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/fisiopatología , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/cirugía , Dolor de la Región Lumbar/genética , Dolor de la Región Lumbar/cirugía , Ratones , Neuroglía/patología , Neuropéptidos/genética , Núcleo Pulposo/fisiopatología , Asta Dorsal de la Médula Espinal/cirugía
6.
J Biol Chem ; 290(51): 30551-61, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26499800

RESUMEN

The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway.


Asunto(s)
Ayuno/metabolismo , Yoduro Peroxidasa/biosíntesis , Músculo Esquelético/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Yoduro Peroxidasa/genética , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Tiroxina/genética , Triyodotironina/genética , Yodotironina Deyodinasa Tipo II
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37813168

RESUMEN

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Asunto(s)
Melanoma , N-Acetilgalactosamina-4-Sulfatasa , Neoplasias Cutáneas , Animales , Humanos , Ratones , Sulfatos de Condroitina/metabolismo , Melanoma/tratamiento farmacológico , N-Acetilgalactosamina-4-Sulfatasa/genética , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Melanoma Cutáneo Maligno
8.
Gene ; 893: 147920, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37890601

RESUMEN

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Asunto(s)
Hiperalgesia , Osteoartritis , Animales , Ratones , Modelos Animales de Enfermedad , Hiperalgesia/genética , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Osteoartritis/metabolismo , Dolor/complicaciones , Dolor/genética , Calidad de Vida , Factor A de Crecimiento Endotelial Vascular/genética
9.
Sci Adv ; 10(7): eadi5501, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354243

RESUMEN

Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.


Asunto(s)
Osteoartritis , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/etiología , Osteoartritis/metabolismo , Dolor/tratamiento farmacológico , Dolor/etiología , Articulación de la Rodilla/metabolismo , Artralgia , Modelos Animales de Enfermedad
10.
J Biol Chem ; 287(24): 20132-43, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22511764

RESUMEN

Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/fisiología , Hígado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción Sp1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Células Cultivadas , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Hepatocitos/metabolismo , Insulina/genética , Insulina/metabolismo , Receptores X del Hígado , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Ratas , Elementos de Respuesta/fisiología , Factor de Transcripción Sp1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transcripción Genética/fisiología
11.
Int J Biol Sci ; 19(2): 675-690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632459

RESUMEN

Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.


Asunto(s)
Terapia Molecular Dirigida , Osteoartritis , Receptores de Factores de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Dolor/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
12.
Biomedicines ; 10(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35740320

RESUMEN

To test probiotic therapy for osteoarthritis (OA), we administered Lactobacillus acidophilus (LA) by oral gavage (2×/week) after induction of OA by partial medial meniscectomy (PMM). Pain was assessed by von Frey filament and hot plate testing. Joint pathology and pain markers were comprehensively analyzed in knee joints, spinal cords, dorsal root ganglia and distal colon by Safranin O/fast green staining, immunofluorescence microscopy and RT-qPCR. LA acutely reduced inflammatory knee joint pain and prevented further OA progression. The therapeutic efficacy of LA was supported by a significant reduction of cartilage-degrading enzymes, pain markers and inflammatory factors in the tissues we examined. This finding suggests a likely clinical effect of LA on OA. The effect of LA treatment on the fecal microbiome was assessed by 16S rRNA gene amplicon sequencing analysis. LA significantly altered the fecal microbiota compared to vehicle-treated mice (PERMANOVA p < 0.009). Our pre-clinical OA animal model revealed significant OA disease modifying effects of LA as reflected by rapid joint pain reduction, cartilage protection, and reversal of dysbiosis. Our findings suggest that LA treatment has beneficial systemic effects that can potentially be developed as a safe OA disease-modifying drug (OADMD).

13.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104242

RESUMEN

Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.


Asunto(s)
Apolipoproteínas M , Factores de Transcripción Forkhead , Insulina , Hígado/metabolismo , Lisofosfolípidos , Esfingosina , Animales , Apolipoproteínas M/genética , Apolipoproteínas M/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo
14.
iScience ; 24(3): 102218, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748706

RESUMEN

TxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic ß cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction.

15.
Gene ; 785: 145619, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33781857

RESUMEN

Osteoarthritis (OA) is one of the most common medical conditions affecting > 300 million people globally which represents the formidable public health challenge. Despite its clinical and financial ramifications, there are currently no approved disease modifying OA drugs available and symptom palliation is the only alternative. Currently, the amount of data on the human intestinal microbiome is growing at a high rate, both in health and in various pathological conditions. With an increase in the amount of the accumulated data, there is an expanded understanding that the microbiome provides compelling evidence of a link between thegut microbiomeand development ofOA. The microbiota management tools of probiotics and/or prebiotics or symbiotic have been developed and indeed, commercialized over the past few decades with the expressed purpose of altering the microbiota within the gastrointestinal tract which could be a potentially novel intervention to tackle or prevent OA. However, the mechanisms how intestinal microbiota affects the OA pathogenesis are still not clear and further research targeting specific gut microbiota or its metabolites is still needed to advance OA treatment strategies from symptomatic management to individualized interventions of OA pathogenesis. This article provides an overview of the various preclinical and clinical studies using probiotics and prebiotics as plausible therapeutic options that can restore the gastrointestinal microbiota and its impact on the OA pathogenesis. May be in the near future the targeted alterations of gut microbiota may pave the way for developing new interventions to prevent and treat OA.


Asunto(s)
Microbioma Gastrointestinal , Osteoartritis/dietoterapia , Osteoartritis/microbiología , Prebióticos , Probióticos/uso terapéutico , Animales , Gota/microbiología , Humanos , Obesidad/complicaciones , Osteoartritis/complicaciones , Transducción de Señal
16.
Immunology ; 126(1): 84-91, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18547366

RESUMEN

T helper type 1 (Th1) cell-mediated immune responses contribute to host defences against intracellular pathogen infections and cancer. Previously, we found that aminoacyl tRNA synthetase-interacting multifunctional protein 1 (AIMP1) activated macrophages and dendritic cells to enhance Th1 responses. Herein, we manipulated this property to improve Th1 immune responses in vivo by constructing a mammalian expression plasmid (pAnti-CD3sFv/AIMP1) encoding AIMP1 fused to the anti-CD3 single-chain Fv (sFv), the smallest unit of the antibody that interacts with the CD3epsilon region of the T-cell receptor. Intramuscular injection of ovalbumin (OVA)-sensitized BALB/c mice with pAnti-CD3sFv/AIMP1 DNA adjuvant increased the OVA-specific, interferon-gamma production by their CD4(+) T cells and the levels of anti-OVA immunoglobulin G2a (IgG2a) isotype in their sera. Furthermore, the pAnti-CD3sFv/AIMP1 DNA adjuvant decreased interleukin-4 production and anti-OVA IgE levels in the OVA-injected mice. Importantly, the pAnti-CD3sFv/AIMP1 was more efficient than a mixture of pAnti-CD3sFv and pAIMP1 in inducing OVA-specific Th1 immune responses and also in inhibiting OVA-specific Th2 responses during antigen priming. These studies indicated that the pAnti-CD3sFv/AIMP1 fusion DNA adjuvant enhanced Th1 immune responses in antigen-sensitized mice.


Asunto(s)
Complejo CD3/inmunología , Citocinas/inmunología , ADN/inmunología , Células TH1/inmunología , Adyuvantes Inmunológicos , Animales , Complejo CD3/genética , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Femenino , Inmunoglobulina E/biosíntesis , Inmunoglobulina G/biosíntesis , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Inyecciones Intramusculares , Interleucina-4/biosíntesis , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Bazo/inmunología
18.
Gene Rep ; 11: 94-100, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30873504

RESUMEN

Osteoarthritis (OA) is a painful and debilitating disease. A striking feature of OA is the dramatic increase in vascular endothelial growth factor (VEGF) levels and in new blood vessel formation in the joints, both of which correlate with the severity of OA pain. Our aim was to determine whether anti-VEGF monoclonal antibodies (mAbs) - MF-1 (mAb to VEGFR1) and DC101 (mAb to VEGFR2) - can reduce OA pain and can do so by targeting VEGF signaling pathways such as Flt-1 (VEGFR1) and Flk-1 (VEGFR2). After IACUC approval, OA was induced by partial medial meniscectomy (PMM) in C57/BL6 mice (20 g). ln the first experiment, for validation of VEGFR1 in DRG, the mouse dorsal root ganglion (DRG) was stimulated with NGF for 48 hours to find the relative gene induction for VEGFR1 vs. 18S by RT-PCR. In the second experiment, Biotin-conjugated VEGFA (1 µg/knee joint) was administered in the left knee joint of mice with advanced OA in order to characterization of VEGFR1 and VEGFR2. pVEGFR1/VEGFR2 was detected by immunostaining in DRGs. Finally, MF-1 and DC101 were administered in OA mice by both intrathecal (IT) and intraarticular (IA) injections, and the change in paw withdrawal threshold (PWT) was measured. Retrograde transport of VEGF was confirmed for detection of pVEGFR1/VEGFR2 in the DRG. PMM surgery led to development of OA and mechanical allodynia, with reduced paw withdrawal thresholds (PWT) (P<0.0001). IT injection of MF-1 led to a reduction of allodynia in advanced OA, but injection of DC101 did not. IA injection of MF-1 or DC101 at one week after PMM injury did not reduce allodynia, but when injected in advanced OA mice joints at 12 weeks, both Mabs increased PWT an indicator of analgesia. Our data show that MF-1 (VEGR1 inhibition) decreases pain in advanced OA after IT or IA injection. Activation of MF-1 or DC101 may ameliorate OA-related joint pain.

19.
Gene ; 655: 1-12, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29474860

RESUMEN

Environmental disruption of the circadian rhythm is linked with increased pain due to osteoarthritis (OA). We aimed to characterize the role of the clock gene in OA-induced pain more systemically using both genetic and pharmacological approaches. Genetically modified mice, (bmal1f/fNav1.8CreERT mice), generated by deleting the critical clock gene, bmal1, from Nav1.8 sensory neurons, were resistant to the development of mechanical hyperalgesia associated with OA induced by partial medial meniscectomy (PMM) of the knee. In wild-type mice, induction of OA by PMM surgery led to a substantial increase in BMAL1 expression in DRG neurons. Interestingly, pharmacological activation of the REV-ERB (a negative regulator of bmal1 transcription) with SR9009 resulted in reduction of BMAL1 expression, and a significant decrease in mechanical hyperalgesia associated with OA. Cartilage degeneration was also significantly reduced in mice treated with the REV-ERB agonist SR9009. Based on these data, we also assessed the effect of pharmacological activation of REV-ERB using a model of environmental circadian disruption with its associated mechanical hyperalgesia, and noted that SR9009 was an effective analgesic in this model as well. Our data clearly demonstrate that genetic disruption of the molecular clock, via deletion of bmal1 in the sensory neurons of the DRG, decreases pain in a model of OA. Furthermore, pharmacological activation of REV-ERB leading to suppression of BMAL1 expression may be an effective method for treating OA-related pain, as well as to reduce joint damage associated with this disease.


Asunto(s)
Analgésicos/uso terapéutico , Artralgia/tratamiento farmacológico , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Terapia Molecular Dirigida/métodos , Osteoartritis/tratamiento farmacológico , Animales , Artralgia/genética , Proteínas CLOCK/genética , Femenino , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/genética , Osteoartritis/genética
20.
Cell Rep ; 22(2): 523-534, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320745

RESUMEN

Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an ∼60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like" metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.


Asunto(s)
Proteínas de Unión al ADN/genética , Hígado Graso/genética , Proteína Forkhead Box O1/genética , Hipercolesterolemia/genética , Animales , Proteínas de Unión al ADN/metabolismo , Hígado Graso/patología , Proteína Forkhead Box O1/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA