Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046996

RESUMEN

Several neurodegenerative disorders are characterized by the accumulation of misfolded proteins and are collectively known as proteinopathies. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) represent some of the most common neurodegenerative disorders whose steady increase in prevalence is having a major socio-economic impact on our society. Multiple laboratories have reported hundreds of changes in gene expression in selective brain regions of AD, PD, and HD brains. While the mechanisms underlying these changes remain an active area of investigation, alterations in the expression of noncoding RNAs, which are common in AD, PD, and HD, may account for some of the changes in gene expression in proteinopathies. In this review, we discuss the role of miR-128, which is highly expressed in mammalian brains, in AD, PD, and HD. We highlight how alterations in miR-128 may account, at least in part, for the gene expression changes associated with proteinopathies. Indeed, miR-128 is involved, among other things, in the regulation of neuronal plasticity, cytoskeletal organization, and neuronal death, events linked to various proteinopathies. For example, reducing the expression of miR-128 in a mouse model of AD ameliorates cognitive deficits and reduces neuropathology. Overall, the data in the literature suggest that targeting miR-128 might be beneficial to mitigate the behavioral phenotype associated with these diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Ratones , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/genética , MicroARNs/genética , Mamíferos/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511065

RESUMEN

The prevalence of obesity is rapidly rising around the world, and this will have a significant impact on our society as it is believed to be one of the leading causes of death. One of the main causes of these occurrences is added sugar consumption, which is associated with a higher risk of obesity, heart disease, diabetes, and brain illnesses such as Alzheimer's disease (AD). To this purpose, excess sugar might worsen oxidative damage and brain inflammation: two neuropathological signs of AD. Dimethyl fumarate (DMF) is an orally accessible methyl ester of fumaric acid with putative neuroprotective and immunomodulatory properties. In addition, DMF stimulates the nuclear factor erythroid 2-related factor 2 (Nrf-2), a key regulator of the antioxidant response mechanism in cells. The aim of the current study was to assess the potential therapeutic benefits of DMF in an in vitro model of metabolic stress induced by high and low sugar levels. We discovered that DMF reversed the negative impacts of high and low glucose exposure on the viability and oxidative stress of SH-SY5Y cells. Mechanistically, DMF's actions were mediated by Nrf-2. To this end, we discovered that DMF boosted the expression of the Nrf-2-regulated genes heme-oxygenase-1 (HO1) and manganese superoxide dismutase (MnSOD). More importantly, we found that inhibiting Nrf-2 expression prevented DMF's positive effects. Our combined findings suggest that DMF may be a valuable support for treatments for metabolic diseases.


Asunto(s)
Enfermedad de Alzheimer , Dimetilfumarato , Fármacos Neuroprotectores , Interferencia de ARN , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Línea Celular Tumoral
3.
Mov Disord ; 37(7): 1346-1359, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35579450

RESUMEN

Neurodegenerative proteinopathies are defined as a class of neurodegenerative disorders, with either genetic or sporadic age-related onset, characterized by the pathological accumulation of aggregated protein deposits. These mainly include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) as well as frontotemporal lobar degeneration (FTLD). The deposition of abnormal protein aggregates in the brain of patients affected by these disorders is thought to play a causative role in neuronal loss and disease progression. On that account, the idea of improving the clearance of pathological protein aggregates has taken hold as a potential therapeutic strategy. Among the possible approaches to pursue for reducing disease protein accumulation, there is the stimulation of the main protein degradation machineries of eukaryotic cells: the ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Of note, several clinical trials testing the efficacy of either UPS- or ALP-active compounds are currently ongoing. Here, we discuss the main gaps and controversies emerging from experimental studies and clinical trials assessing the therapeutic efficacy of modulators of either the UPS or ALP in neurodegenerative proteinopathies, to gather whether they may constitute a real gateway from these disorders. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Agregado de Proteínas , Proteínas/metabolismo , Proteolisis , Ubiquitina/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955847

RESUMEN

Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética/métodos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
5.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806393

RESUMEN

Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-ß and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.


Asunto(s)
Cartílago Articular , Osteoartritis , Materiales Biocompatibles/química , Cartílago Articular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Osteoartritis/terapia , Osteogénesis , Péptidos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Mol Psychiatry ; 25(10): 2620-2629, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-30622336

RESUMEN

The lack of effective treatments for Alzheimer's disease (AD) is alarming, considering the number of people currently affected by this disorder and the projected increase over the next few decades. Elevated homocysteine (Hcy) levels double the risk of developing AD. Choline, a primary dietary source of methyl groups, converts Hcy to methionine and reduces age-dependent cognitive decline. Here, we tested the transgenerational benefits of maternal choline supplementation (ChS; 5.0 g/kg choline chloride) in two generations (Gen) of APP/PS1 mice. We first exposed 2.5-month-old mice to the ChS diet and allowed them to breed with each other to generate Gen-1 mice. Gen-1 mice were exposed to the ChS diet only during gestation and lactation; once weaned at postnatal day 21, Gen-1 mice were then kept on the control diet for the remainder of their life. We also bred a subset of Gen-1 mice to each other and obtained Gen-2 mice; these mice were never exposed to ChS. We found that ChS reduced Aß load and microglia activation, and improved cognitive deficits in old Gen-1 and Gen-2 APP/PS1 mice. Mechanistically, these changes were linked to a reduction in brain Hcy levels in both generations. Further, RNA-Seq data from APP/PS1 hippocampal tissue revealed that ChS significantly changed the expression of 27 genes. These genes were enriched for inflammation, histone modifications, and neuronal death functional classes. Our results are the first to demonstrate a transgenerational benefit of ChS and suggest that modifying the maternal diet with additional choline reduces AD pathology across multiple generations.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Colina/farmacología , Suplementos Dietéticos , Homocisteína/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Colina/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos
7.
Hum Mol Genet ; 26(24): 4823-4835, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29036636

RESUMEN

Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aß and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aß production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Trastornos del Conocimiento/genética , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Presenilina-1/genética
8.
Hum Mol Genet ; 24(16): 4625-35, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26002100

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP) are two neurodegenerative disorders characterized by the accumulation of TDP-43. TDP-43 is proteolitically cleaved to generate two major C-terminal fragments of 35 and 25 kDa. The latter, known as TDP-25, is a consistent feature of FTLD-TDP and ALS; however, little is known about its role in disease pathogenesis. We have previously developed transgenic mice overexpressing low levels of TDP-25 (TgTDP-25(+/0)), which at 6 months of age show mild cognitive impairments and no motor deficits. To better understand the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP, we generated TDP-25 homozygous mice (TgTDP-25(+/+)), thereby further increasing TDP-25 expression. We found a gene-dosage effect on cognitive and motor function at 15 months of age, as the TgTDP-25(+/+) showed more severe spatial and working memory deficits as well as worse motor performance than TgTDP-25(+/0) mice. These behavioral deficits were associated with increased soluble levels of TDP-25 in the nucleus and cytosol. Notably, high TDP-25 levels were also linked to reduced autophagy induction and proteasome function, two events that have been associated with both ALS and FTLD-TDP. In summary, we present strong in vivo evidence that high levels of TDP-25 are sufficient to cause behavioral deficits and reduce function of two of the major protein turnover systems: autophagy and proteasome. These mice represent a new tool to study the role of TDP-25 in the pathogenesis of ALS and FTLD-TDP.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Proteolisis , Esclerosis Amiotrófica Lateral/genética , Animales , Autofagia/genética , Conducta Animal , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/genética , Humanos , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína
9.
Alzheimers Dement ; 13(2): 152-167, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27693185

RESUMEN

A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-ß oligomers (AßOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AßO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AßOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AßOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.


Asunto(s)
Ciclo Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neuronas/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Humanos , Hidrocéfalo Normotenso/metabolismo , Insulina/metabolismo , Lisosomas/metabolismo , Ratones Noqueados , Persona de Mediana Edad , Proteínas tau/genética , Proteínas tau/metabolismo
10.
J Neurosci ; 35(41): 14042-56, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468204

RESUMEN

Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-ß and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the ß-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-ß. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT: Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-ß and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of ß-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica/fisiología , Trastornos de la Memoria/terapia , Plasticidad Neuronal/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/patología , Humanos , Locomoción/genética , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Ratones , Ratones Transgénicos , Plasticidad Neuronal/genética , Neuronas/fisiología , Fragmentos de Péptidos/metabolismo , Presenilina-1/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/genética , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Hum Mol Genet ; 23(15): 4024-34, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24626633

RESUMEN

Accumulation of the microtubule-binding protein tau is a key event in several neurodegenerative disorders referred to as tauopathies, which include Alzheimer's disease, frontotemporal lobar degeneration, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Thus, understanding the molecular pathways leading to tau accumulation will have a major impact across multiple neurodegenerative disorders. To elucidate the pathways involved in tau pathology, we removed the gene encoding the beta-2 adrenergic receptors (ß2ARs) from a mouse model overexpressing mutant human tau. Notably, the number of ß2ARs is increased in brains of AD patients and epidemiological studies show that the use of beta-blockers decreases the incidence of AD. The mechanisms underlying these observations, however, are not clear. We show that the tau transgenic mice lacking the ß2AR gene had a reduced mortality rate compared with the parental tau transgenic mice. Removing the gene encoding the ß2ARs from the tau transgenic mice also significantly improved motor deficits. Neuropathologically, the improvement in lifespan and motor function was associated with a reduction in brain tau immunoreactivity and phosphorylation. Mechanistically, we provide compelling evidence that the ß2AR-mediated changes in tau were linked to a reduction in the activity of GSK3ß and CDK5, two of the major tau kinases. These studies provide a mechanistic link between ß2ARs and tau and suggest the molecular basis linking the use of beta-blockers to a reduced incidence of AD. Furthermore, these data suggest that a detailed pharmacological modulation of ß2ARs could be exploited to develop better therapeutic strategies for AD and other tauopathies.


Asunto(s)
Receptores Adrenérgicos beta 2/genética , Tauopatías/genética , Proteínas tau/genética , Animales , Ganglios Basales/metabolismo , Ganglios Basales/patología , Conducta Animal , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Actividad Motora/genética , Receptores Adrenérgicos beta 2/deficiencia , Transducción de Señal , Análisis de Supervivencia , Tauopatías/metabolismo , Tauopatías/mortalidad , Tauopatías/patología , Proteínas tau/metabolismo
12.
J Neurosci ; 34(23): 7988-98, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899720

RESUMEN

Elevated mammalian target of rapamycin (mTOR) signaling has been found in Alzheimer's disease (AD) patients and is linked to diabetes and aging, two known risk factors for AD. However, whether hyperactive mTOR plays a role in the cognitive deficits associated with AD remains elusive. Here, we genetically reduced mTOR signaling in the brains of Tg2576 mice, a widely used animal model of AD. We found that suppression of mTOR signaling reduced amyloid-ß deposits and rescued memory deficits. Mechanistically, the reduction in mTOR signaling led to an increase in autophagy induction and restored the hippocampal gene expression signature of the Tg2576 mice to wild-type levels. Our results implicate hyperactive mTOR signaling as a previous unidentified signaling pathway underlying gene-expression dysregulation and cognitive deficits in AD. Furthermore, hyperactive mTOR signaling may represent a molecular pathway by which aging contributes to the development of AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Conocimiento , Regulación de la Expresión Génica/genética , Expresión Génica/genética , Hipocampo/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/terapia , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Humanos , Inmunosupresores/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética
13.
J Neurosci ; 33(3): 906-13, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325230

RESUMEN

The accumulation of TDP-43 (transactive response DNA-binding protein 43) and its 25 kDa C-terminal fragment (TDP-25) is a hallmark of several neurodegenerative disorders, including frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). The majority of FTLD-TDP cases are due to loss of function mutations in the gene encoding progranulin, a secreted growth factor. In ALS, specific mutations in the gene encoding TDP-43 have been linked to the disease pathogenesis. In both cases, however, the penetrance of the mutations greatly increases during aging, suggesting that other genetic or environmental factors may facilitate the development of the disease. Using transgenic mice that overexpress the 25 kDa C-terminal fragment of TDP-43, here we show that glucocorticoids, stress hormones known to increase the brain susceptibility to neurotoxic insults, increase the levels of soluble TDP-25 and exacerbate cognitive deficits, without altering full-length TDP-43 levels. Additionally, we show that the mechanism underlying the glucocorticoid-mediated increase in TDP-25 levels is coupled to changes in the glutathione redox state. Glutathione is an antioxidant involved in protecting cells from damage caused by reactive oxygen species; notably, alterations in the ratio of reduced to oxidized glutathione, which is the primary determinant of the cellular redox state, are associated with aging and neurodegeneration. We show that restoring the ratio of reduced to oxidized glutathione blocks the glucocorticoid effects on TDP-25. These data show that glucocorticoids potentiate the neurotoxic action of TDP-25 by increasing its levels and clearly indicate the role of cellular oxidative damage in this process.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Dexametasona/farmacología , Glucocorticoides/farmacología , Glutatión/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Proteinopatías TDP-43/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al ADN/genética , Dexametasona/uso terapéutico , Glucocorticoides/uso terapéutico , Disulfuro de Glutatión/metabolismo , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología
14.
J Biol Chem ; 288(15): 10298-307, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23430246

RESUMEN

Alzheimer disease (AD) is characterized by neurodegeneration marked by loss of synapses and spines associated with hyperphosphorylation of tau protein. Accumulating amyloid ß peptide (Aß) in brain is linked to neurofibrillary tangles composed of hyperphosphorylated tau in AD. Here, we identify ß2-adrenergic receptor (ß2AR) that mediates Aß-induced tau pathology. In the prefrontal cortex (PFC) of 1-year-old transgenic mice with human familial mutant genes of presenilin 1 and amyloid precursor protein (PS1/APP), the phosphorylation of tau at Ser-214 Ser-262 and Thr-181, and the protein kinases including JNK, GSK3α/ß, and Ca(2+)/calmodulin-dependent protein kinase II is increased significantly. Deletion of the ß2AR gene in PS1/APP mice greatly decreases the phosphorylation of these proteins. Further analysis reveals that in primary PFC neurons, Aß signals through a ß2AR-PKA-JNK pathway, which is responsible for most of the phosphorylation of tau at Ser-214 and Ser-262 and a significant portion of phosphorylation at Thr-181. Aß also induces a ß2AR-dependent arrestin-ERK1/2 activity that does not participate in phosphorylation of tau. However, inhibition of the activity of MEK, an upstream enzyme of ERK1/2, partially blocks Aß-induced tau phosphorylation at Thr-181. The density of dendritic spines and synapses is decreased in the deep layer of the PFC of 1-year-old PS1/APP mice, and the mice exhibit impairment of learning and memory in a novel object recognition paradigm. Deletion of the ß2AR gene ameliorates pathological effects in these senile PS1/APP mice. The study indicates that ß2AR may represent a potential therapeutic target for preventing the development of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores Adrenérgicos beta 2/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Arrestina/genética , Arrestina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Receptores Adrenérgicos beta 2/genética , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología
15.
J Neurosci Res ; 92(2): 195-205, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24273049

RESUMEN

Naked mole rats (NMRs) are the longest-lived rodents, with young individuals having high levels of Aß in their brains. The purpose of this study was twofold: to assess the distribution of Aß in key regions of NMR brains (cortex, hippocampus, cerebellum) and to understand whether the accumulation of Aß is due to enhanced production or decreased degradation. Recent evidence indicates that lipid peroxides directly participate in induction of cytoprotective proteins, such as heat shock proteins (Hsps), which play a central role in the cellular mechanisms of stress tolerance. Amyloid precursor protein processing, lipid peroxidation, Hsps, redox status, and protein degradation processes were therefore assessed in key NMR brain regions. NMR brains had high levels of lipid peroxidation compared with mice, and the NMR hippocampus had the highest levels of the most toxic moiety of Aß (soluble Aß1 - 42 ). This was due not to increased Aß production but rather to low antioxidant potential, which was associated with low induction of Hsp70 and heme oxygenase-1 as well as low ubiquitin-proteasome activity. NMRs may therefore serve as natural models for understanding the relationship between oxidative stress and Aß levels and its effects on the brain.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo/fisiología , Animales , Encéfalo/patología , Immunoblotting , Peroxidación de Lípido/fisiología , Ratas Topo
16.
Cells ; 13(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38667333

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss, imposing a significant burden on affected individuals and their families. Despite the recent promising progress in therapeutic approaches, more needs to be done to understand the intricate molecular mechanisms underlying the development and progression of AD. Growing evidence points to epigenetic changes as playing a pivotal role in the pathogenesis of the disease. The dynamic interplay between genetic and environmental factors influences the epigenetic landscape in AD, altering gene expression patterns associated with key pathological events associated with disease pathogenesis. To this end, epigenetic alterations not only impact the expression of genes implicated in AD pathogenesis but also contribute to the dysregulation of crucial cellular processes, including synaptic plasticity, neuroinflammation, and oxidative stress. Understanding the complex epigenetic mechanisms in AD provides new avenues for therapeutic interventions. This review comprehensively examines the role of DNA methylation and histone modifications in the context of AD. It aims to contribute to a deeper understanding of AD pathogenesis and facilitate the development of targeted therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Epigénesis Genética , Código de Histonas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Metilación de ADN/genética , Código de Histonas/genética , Histonas/metabolismo , Animales
17.
J Neurosci ; 32(12): 4133-44, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442077

RESUMEN

Potassium (K(+)) channels are essential to neuronal signaling and survival. Here we show that these proteins are targets of reactive oxygen species in mammalian brain and that their oxidation contributes to neuropathy. Thus, the KCNB1 (Kv2.1) channel, which is abundantly expressed in cortex and hippocampus, formed oligomers upon exposure to oxidizing agents. These oligomers were ∼10-fold more abundant in the brain of old than young mice. Oxidant-induced oligomerization of wild-type KCNB1 enhanced apoptosis in neuronal cells subject to oxidative insults. Consequently, a KCNB1 variant resistant to oxidation, obtained by mutating a conserved cysteine to alanine, (C73A), was neuroprotective. The fact that oxidation of KCNB1 is toxic, argues that this mechanism may contribute to neuropathy in conditions characterized by high levels of oxidative stress, such as Alzheimer's disease (AD). Accordingly, oxidation of KCNB1 channels was exacerbated in the brain of a triple transgenic mouse model of AD (3xTg-AD). The C73A variant protected neuronal cells from apoptosis induced by incubation with ß-amyloid peptide (Aß(1-42)). In an invertebrate model (Caenorhabditis elegans) that mimics aspects of AD, a C73A-KCNB1 homolog (C113S-KVS-1) protected specific neurons from apoptotic death induced by ectopic expression of human Aß(1-42). Together, these data underscore a novel mechanism of toxicity in neurodegenerative disease.


Asunto(s)
Encéfalo/citología , Neuronas/fisiología , Estrés Oxidativo/fisiología , Canales de Potasio Shab/fisiología , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/toxicidad , Factores de Edad , Alanina/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Caenorhabditis elegans , Células Cultivadas , Cricetinae , Cricetulus , Cisteína/genética , Modelos Animales de Enfermedad , Disulfuros/toxicidad , Estimulación Eléctrica , Embrión de Mamíferos , Femenino , Fluoresceínas/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Espectrometría de Masas/métodos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Neuronas/efectos de los fármacos , Oxidantes/toxicidad , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Técnicas de Placa-Clamp , Fragmentos de Péptidos/toxicidad , Presenilina-1/genética , Propanoles/farmacología , Canales de Potasio Shab/genética , Transfección
18.
Am J Pathol ; 180(1): 293-302, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22067910

RESUMEN

Transactive response DNA-binding protein 43 (TDP-43) is the pathological signature protein in several neurodegenerative disorders, including the majority of frontotemporal lobar degeneration cases (FTLD-TDP), motor neuron disease, and amyotrophic lateral sclerosis. Pathological TDP-43 is mislocalized from its nuclear location to the cytoplasm, where it accumulates and is proteolytically cleaved to form C-terminal fragments. Although the 25-kDa C-terminal fragment of TDP-43 (TDP-25) accumulates in affected brain regions, its role in the disease pathogenesis remains elusive. To address this problem, we have generated a novel transgenic mouse that selectively expresses TDP-25 in neurons. We show that transgenic mice expressing TDP-25 develop cognitive deficits associated with the build-up of soluble TDP-25. These cognitive deficits are independent of TDP-43-positive inclusions and occur without overt neurodegeneration. Additionally, we show that the expression of TDP-25 is sufficient to alter the processing of endogenous full-length TDP-43. These studies represent the first in vivo demonstration of a pathological role for TDP-25 and strongly suggest that the onset of cognitive deficits in TDP-43 proteinopathies is independent of TDP-43 inclusions. These data provide a framework for understanding the molecular mechanisms underlying the onset of cognitive deficits in FTLD-TDP and other TDP-43 proteinopathies; thus, the TDP-25 transgenic mice represent a unique tool to reach this goal.


Asunto(s)
Trastornos del Conocimiento/etiología , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/psicología , Proteinopatías TDP-43/psicología , Animales , Trastornos del Conocimiento/metabolismo , Función Ejecutiva/fisiología , Degeneración Lobar Frontotemporal/metabolismo , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Reconocimiento en Psicología/fisiología , Proteinopatías TDP-43/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(52): 22687-92, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149712

RESUMEN

Cognitive dysfunction and memory loss are common features of Alzheimer's disease (AD). Abnormalities in the expression profile of immediate early genes that play a critical role in memory formation, such as the cAMP-response element binding protein (CREB), have been reported in the brains of AD patients. Here we show that amyloid-ß (Aß) accumulation, which plays a primary role in the cognitive deficits of AD, interferes with CREB activity. We further show that restoring CREB function via brain viral delivery of the CREB-binding protein (CBP) improves learning and memory deficits in an animal model of AD. Notably, such improvements occur without changes in Aß and tau pathology, and instead are linked to an increased level of brain-derived neurotrophic factor. The resulting data suggest that Aß-induced learning and memory deficits are mediated by alterations in CREB function, based on the finding that restoring CREB activity by directly modulating CBP levels in the brains of adult mice is sufficient to ameliorate learning and memory. Therefore, increasing CBP expression in adult brains may be a valid therapeutic approach not only for AD, but also for various brain disorders characterized by alterations in immediate early genes, further supporting the concept that viral vector delivery may be a viable therapeutic approach in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Trastornos de la Memoria/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Células CHO , Proteína de Unión a CREB/genética , Cricetinae , Cricetulus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Humanos , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/terapia , Lentivirus/genética , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Proteínas tau/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(7): 3081-6, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133765

RESUMEN

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/deficiencia , Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Hidroxicolesteroles/metabolismo , Modelos Biológicos , Acetil-CoA C-Acetiltransferasa/genética , Acilcoenzima A/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Animales , Colesterol/metabolismo , Silenciador del Gen , Humanos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA