Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625052

RESUMEN

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Asunto(s)
Células Germinativas/metabolismo , Neoplasias/patología , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Eliminación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Células Germinativas/citología , Mutación de Línea Germinal , Humanos , Pérdida de Heterocigocidad/genética , Mutación Missense , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Supresoras de Tumor/genética
2.
PLoS Biol ; 17(5): e3000245, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086360

RESUMEN

Lysosomes are ubiquitous acidified organelles that degrade intracellular and extracellular material trafficked via multiple pathways. Lysosomes also sense cellular nutrient levels to regulate target of rapamycin (TOR) kinase, a signaling enzyme that drives growth and suppresses activity of the MiT/TFE family of transcription factors that control biogenesis of lysosomes. In this study, we subjected worms lacking basic helix-loop-helix transcription factor 30 (hlh-30), the Caenorhabditis elegans MiT/TFE ortholog, to starvation followed by refeeding to understand how this pathway regulates survival with variable nutrient supply. Loss of HLH-30 markedly impaired survival in starved larval worms and recovery upon refeeding bacteria. Remarkably, provision of simple nutrients in a completely defined medium (C. elegans maintenance medium [CeMM]), specifically glucose and linoleic acid, restored lysosomal acidification, TOR activation, and survival with refeeding despite the absence of HLH-30. Worms deficient in lysosomal lipase 2 (lipl-2), a lysosomal enzyme that is transcriptionally up-regulated in starvation in an HLH-30-dependent manner, also demonstrated increased mortality with starvation-refeeding that was partially rescued with glucose, suggesting a critical role for LIPL-2 in lipid metabolism under starvation. CeMM induced transcription of vacuolar proton pump subunits in hlh-30 mutant worms, and knockdown of vacuolar H+-ATPase 12 (vha-12) and its upstream regulator, nuclear hormone receptor 31 (nhr-31), abolished the rescue with CeMM. Loss of Ras-related GTP binding protein C homolog 1 RAGC-1, the ortholog for mammalian RagC/D GTPases, conferred starvation-refeeding lethality, and RAGC-1 overexpression was sufficient to rescue starved hlh-30 mutant worms, demonstrating a critical need for TOR activation with refeeding. These results show that HLH-30 activation is critical for sustaining survival during starvation-refeeding stress via regulating TOR. Glucose and linoleic acid bypass the requirement for HLH-30 in coupling lysosome nutrient sensing to survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Nutrientes , Animales , Núcleo Celular/metabolismo , Ciclo del Ácido Cítrico , Medios de Cultivo , Metabolismo Energético/genética , Conducta Alimentaria , Ácido Linoleico/metabolismo , Lipasa/metabolismo , Metaboloma , Mutación/genética , Fenotipo , Bombas de Protones/metabolismo , Inanición/metabolismo , Estrés Fisiológico/genética , Análisis de Supervivencia , Activación Transcripcional/genética
3.
Dermatol Surg ; 48(11): 1135-1139, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342245

RESUMEN

BACKGROUND: Limited data exists for bupivacaine injection after Mohs micrographic surgery (MMS). OBJECTIVE: Evaluate how bupivacaine affects postoperative pain and narcotic use. MATERIALS AND METHODS: In this multicenter, single-blinded, prospective randomized controlled trial, patients received bupivacaine or saline (placebo) immediately after MMS with flap reconstructions identified by American Academy of Dermatology expert consensus as high-risk for pain and narcotic use. For 48 hours postoperatively, patients logged analgesic use, pain scores (0-10), and whether pain was controlled. RESULTS: One hundred seventy-four patients were included. Narcotic analgesic use was higher in the placebo group during the first 24 hours (odds ratio 2.18; confidence interval [CI]: 1.08-4.41; p = .03), second 24 hours (odds ratio 2.18; CI: 0.91-5.29; p = .08), and 48 hours combined (odds ratio 2.58; CI: 1.28-5.24; p < .01). Pain scores were lower in the bupivacaine group during the first 8 hours (mean difference 1.6; CI: 0.73-2.38; p < .001). Overall analgesic use (narcotic and non-narcotic) and percentage of patients reporting pain under control were similar between groups. There were no significant differences in demographics or surgical characteristics. No adverse events occurred. CONCLUSION: Single-dose bupivacaine decreased postoperative pain and narcotic analgesic use after MMS with reconstructions likely to cause significant pain. Bupivacaine may have a role in postoperative pain management and reducing narcotic use in this population.


Asunto(s)
Bupivacaína , Trastornos Relacionados con Opioides , Humanos , Anestésicos Locales , Manejo del Dolor , Cirugía de Mohs/efectos adversos , Estudios Prospectivos , Dimensión del Dolor , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología , Narcóticos/uso terapéutico , Método Doble Ciego
4.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961519

RESUMEN

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

5.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995947

RESUMEN

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/genética , Humanos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
6.
Nat Commun ; 11(1): 5573, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149122

RESUMEN

Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.


Asunto(s)
Neoplasias/genética , Precursores del ARN/genética , Sitios de Empalme de ARN , Empalme del ARN , Quinasas de la Proteína-Quinasa Activada por el AMP , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Bases de Datos Genéticas , Exones , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Intrones , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Mutación , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN no Traducido , RNA-Seq , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación del Exoma , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
7.
Genome Med ; 10(1): 60, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053901

RESUMEN

BACKGROUND: Although large-scale, next-generation sequencing (NGS) studies of cancers hold promise for enabling precision oncology, challenges remain in integrating NGS with clinically validated biomarkers. METHODS: To overcome such challenges, we utilized the Database of Evidence for Precision Oncology (DEPO) to link druggability to genomic, transcriptomic, and proteomic biomarkers. Using a pan-cancer cohort of 6570 tumors, we identified tumors with potentially druggable biomarkers consisting of drug-associated mutations, mRNA expression outliers, and protein/phosphoprotein expression outliers identified by DEPO. RESULTS: Within the pan-cancer cohort of 6570 tumors, we found that 3% are druggable based on FDA-approved drug-mutation interactions in specific cancer types. However, mRNA/phosphoprotein/protein expression outliers and drug repurposing across cancer types suggest potential druggability in up to 16% of tumors. The percentage of potential drug-associated tumors can increase to 48% if we consider preclinical evidence. Further, our analyses showed co-occurring potentially druggable multi-omics alterations in 32% of tumors, indicating a role for individualized combinational therapy, with evidence supporting mTOR/PI3K/ESR1 co-inhibition and BRAF/AKT co-inhibition in 1.6 and 0.8% of tumors, respectively. We experimentally validated a subset of putative druggable mutations in BRAF identified by a protein structure-based computational tool. Finally, analysis of a large-scale drug screening dataset lent further evidence supporting repurposing of drugs across cancer types and the use of expression outliers for inferring druggability. CONCLUSIONS: Our results suggest that an integrated analysis platform can nominate multi-omics alterations as biomarkers of druggability and aid ongoing efforts to bring precision oncology to patients.


Asunto(s)
Biomarcadores de Tumor/genética , Genómica/métodos , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Variantes Farmacogenómicas , Medicina de Precisión/métodos , Femenino , Células HEK293 , Humanos , Masculino , Mutación , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA