Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Genomics ; 298(6): 1435-1447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725237

RESUMEN

High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2326 and 2454 SNP markers that spanned a total genetic distance of 2133 cM across 16 linkage groups and 2169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


Asunto(s)
Perilla , Tetraploidía , Genotipo , Perilla/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Ligamiento Genético , Genoma de Planta/genética
2.
Materials (Basel) ; 15(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500152

RESUMEN

Concrete is one of the most widely used structural construction materials and has significantly influenced industrial development [...].

3.
Appl Radiat Isot ; 176: 109851, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34243018

RESUMEN

This study explored the influence of using copper slag as an alternative sand for producing cement mortar bricks and its effect on γ-ray attenuation property, strength, and consistency of mortar. The linear attenuation coefficients and mass attenuation coefficients were experimentally determined for mortar mixtures using the 60Co and 137Cs gamma-ray source, and, using the Phy-X program, attenuation parameters were theoretically calculated in 1 keV-100 GeV. Sample bricks with added copper slag were produced and tested. In the results, the added copper slag was greatly beneficial for increasing the flowability and strength of mortar, and, given all the results of attenuation parameters, the use of copper slag as aggregates was notably advantageous compared to silica sands for gamma-ray attenuation mainly due to the high Fe quantity in copper slag. The trial brick specimens using 100 wt% copper slag replacement for sand not only satisfied all requirements of cement brick in the Korean standard (KS) F 4004, but also the TCLP regulation.

4.
Materials (Basel) ; 15(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009417

RESUMEN

This study examined the mechanical and durability properties of CaO-activated ground-granulated blast-furnace slag (GGBFS) concretes made with three different additives (CaCl2, Ca(HCOO)2, and Ca(NO3)2) and compared their properties to the concrete made with 100% Ordinary Portland Cement (OPC). All concrete mixtures satisfied targeted air content and slump ranges but exhibited significantly different mechanical and durability properties. The CaO-activated GGBFS concretes showed different strength levels, depending on the type of additive. The added CaCl2 was the most effective, but Ca(NO3)2 was the least effective at increasing mechanical strength in the CaO-activated GGBFS system. The OPC concrete showed the most excellent freezing-thawing resistance in the durability test, but only the CaO-activated GGBFS concrete with CaCl2 exhibited relatively similar resistance. In addition, the chemical resistance was significantly dependent on the type of acid solution and the type of binder. The OPC concrete had the best resistance in the HCl solution, while all CaO-activated GGBFS concretes had relatively low resistances. However, in the H2SO4 solution, all CaO-activated GGBFS concretes had better resistance than the OPC concrete. All concrete with sulfate ions had ettringite before immersion. However, when they were immersed in HCl solution, ettringite tended to decrease, and gypsum was generated. Meanwhile, the CaO-activated GGBFS concrete with CaCl2 did not change the type of reaction product, possibly due to the absence of ettringite and Ca(OH)2. When immersed in an H2SO4 solution, ettringite decreased, and gypsum increased in all concrete. In addition, the CaO-activated concrete with CaCl2 had a considerable amount of gypsum; it seemed that the dissolved C-S-H and calcite, due to the low pH, likely produced Ca2+ ions, and gypsum formed from the reaction between Ca2+ and H2SO4.

5.
Materials (Basel) ; 13(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302516

RESUMEN

This study investigated the use of coal bottom ash (bottom ash) and CaO-CaCl2-activated ground granulated blast furnace slag (GGBFS) binder in the manufacturing of artificial fine aggregates using cold-bonded pelletization. Mixture samples were prepared with varying added contents of bottom ash of varying added contents of bottom ash relative to the weight of the cementless binder (= GGBFS + quicklime (CaO) + calcium chloride (CaCl2)). In the system, the added bottom ash was not simply an inert filler but was dissolved at an early stage. As the ionic concentrations of Ca and Si increased due to dissolved bottom ash, calcium silicate hydrate (C-S-H) formed both earlier and at higher levels, which increased the strength of the earlier stages. However, the added bottom ash did not affect the total quantities of main reaction products, C-S-H and hydrocalumite, in later phases (e.g., 28 days), but simply accelerated the binder reaction until it had occurred for 14 days. After considering both the mechanical strength and the pelletizing formability of all the mixtures, the proportion with 40 relative weight of bottom ash was selected for the manufacturing of pilot samples of aggregates. The produced fine aggregates had a water absorption rate of 9.83% and demonstrated a much smaller amount of heavy metal leaching than the raw bottom ash.

6.
Materials (Basel) ; 9(3)2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28773312

RESUMEN

In this study, ground granulated blast-furnace slag (GGBFS) samples from Singapore, Korea, and the United Arab Emirates were hydrated with purified water to estimate the cementing capabilities without activators. Raw GGBFS samples and hardened pastes were characterized to provide rational explanations for the strengths and hydration products. The slag characteristics that influenced the best strength of raw GGBFS were identified. Although it is widely recognized that GGBFS alone generally shows little cementing capability when hydrated with water, the GGBFSs examined in this study demonstrated various strength developments and hydration behaviors; one of the GGBFS samples even produced a high strength comparable to that of alkali- or Ca(OH)2-activated GGBFS. In particular, as the GGBFS exhibited a greater number of favorable slag characteristics for hydraulic reactivity, it produced more C-S-H and ettringite. The results demonstrated a reasonable potential for commercial GGBFS with calcium sulfates to function as an independent cementitious binder without activators.

7.
Materials (Basel) ; 9(5)2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28773523

RESUMEN

Monosulfoaluminate (Ca4Al2(SO4)(OH)12∙6H2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42- and OH-) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel's salt or Friedel's salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

8.
ACS Synth Biol ; 1(11): 532-40, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23656230

RESUMEN

Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing L-isoleucine, an important branched-chain amino acid. The thrABC (encoding L-threonine biosynthetic enzymes), ilvA (encoding feedback-resistant threonine dehydratase), ilvIH (encoding feedback-resistant acetohydroxy acid synthase III), and ygaZH (encoding branched-chain amino acid exporter) genes were amplified by plasmid-based overexpression. The ilvCED (encoding L-isoleucine biosynthetic enzymes) and lrp (encoding global regulator Lrp) genes were also amplified by chromosomal promoter replacement in order to further increase the flux toward L-isoleucine. The final engineered E. coli strain was able to produce 9.46 g/L of L-isoleucine with a yield of 0.14 g/g of glucose by fed-batch culture. The overall design principles described here for the production of highly regulated product should be useful in designing strains for the production of other similar bioproducts.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Isoleucina/biosíntesis , Isoleucina/genética , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Aminoácidos de Cadena Ramificada/genética , Aminoácidos de Cadena Ramificada/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Escherichia coli/metabolismo , Genes Reguladores , Ingeniería Genética/métodos , Isoleucina/metabolismo , Ingeniería Metabólica/métodos , Treonina/biosíntesis , Treonina/genética , Treonina/metabolismo , Treonina Deshidratasa/biosíntesis , Treonina Deshidratasa/genética , Treonina Deshidratasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA