Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Molecules ; 27(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164296

RESUMEN

The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.


Asunto(s)
Corazón/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Canales Catiónicos TRPV/metabolismo , Animales , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
2.
Can J Physiol Pharmacol ; 94(6): 634-42, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27050838

RESUMEN

Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1ß, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/metabolismo , PPAR alfa/biosíntesis , Animales , Clofibrato/farmacología , Clofibrato/uso terapéutico , Regulación de la Expresión Génica , Masculino , Infarto del Miocardio/tratamiento farmacológico , PPAR alfa/genética , Distribución Aleatoria , Ratas , Ratas Wistar
3.
J Med Food ; 25(1): 61-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34874786

RESUMEN

Lychee is a fruit of Asian origin with an exquisite flavor and an attractive reddish color. However, according to recent reports, the consumption of this fruit reduces the levels of blood glucose with adverse effects on human health such as encephalopathy and hypoglycemic. The objective of this work was to determine if the peel, pulp, and seed of "Brewster" lychee fruits harvested at two stages of maturity had antihyperglycemic effect. This effect was determined by an oral glucose tolerance test using Wistar rats. In addition, ultraviolet-visible spectrophotometry and high-resolution liquid chromatography were used to quantify phenolic compounds, flavonoids, organic acids (OAs), sugars, and antioxidant activity. Results indicated that stage I pulp (immature fruits) and stage II peel and seed (export mature fruits) reduced blood glucose levels, and the effects of the former two were synergistic with metformin. The pulp of mature fruits (stage II), however, lacked a hypoglycemic effect. Additionally, the peel and the seeds of these fruits presented a high antioxidant activity (as determined by DPPH [2,2-diphenyl-2-picryl-hydracyl] and ABTS+ [2,2-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid] methods), which correlated well with the total content of phenolic compounds. The highest content of polyphenolics, flavonoids, and OAs was found in the extracts of the peel and seeds of both stages of maturity. It was therefore concluded that "Brewster" mature lychees are safe for human consumption, and both the seed and the peel can be useful sources for obtaining new compounds with antihyperglycemic activity.


Asunto(s)
Litchi , Animales , Antioxidantes/farmacología , Frutas , Hipoglucemiantes , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
4.
Artículo en Inglés | MEDLINE | ID: mdl-31557799

RESUMEN

The purpose of the present study was to analyze the actions of transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin (CS) and of its antagonist capsazepine (CZ), on cardiac function as well as endothelial biomarkers and some parameters related with nitric oxide (NO) release in L-NG-nitroarginine methyl ester (L-NAME)-induced hypertensive rats. NO has been implicated in the pathophysiology of systemic arterial hypertension (SAHT). We analyzed the levels of nitric oxide (NO), tetrahydrobiopterin (BH4), malondialdehyde (MDA), total antioxidant capacity (TAC), cyclic guanosin monophosphate (cGMP), phosphodiesterase-3 (PDE-3), and the expression of endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GTPCH-1), protein kinase B (AKT), and TRPV1 in serum and cardiac tissue of normotensive (118±3 mmHg) and hypertensive (H) rats (165 ± 4 mmHg). Cardiac mechanical performance (CMP) was calculated and NO was quantified in the coronary effluent in the Langendorff isolated heart model. In hypertensive rats capsaicin increased the levels of NO, BH4, cGMP, and TAC, and reduced PDE-3 and MDA. Expressions of eNOS, GTPCH-1, and TRPV1 were increased, while AKT was decreased. Capsazepine diminished these effects. In the hypertensive heart, CMP improved with the CS treatment. In conclusion, the activation of TRPV1 in H rats may be an alternative mechanism for the improvement of cardiac function and systemic levels of biomarkers related to the bioavailability of NO.


Asunto(s)
Corazón/efectos de los fármacos , Hipertensión/metabolismo , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Biomarcadores/sangre , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Presión Sanguínea , Capsaicina/análogos & derivados , Capsaicina/farmacología , Capsaicina/uso terapéutico , Evaluación Preclínica de Medicamentos , Hipertensión/tratamiento farmacológico , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Wistar , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Resistencia Vascular
5.
Pharmacol Rep ; 70(2): 294-303, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29477037

RESUMEN

BACKGROUND: The purpose of this study was to evaluate the participation of satellite glial cells (SGC), microglia and astrocytes in a model of streptozotocin-induced diabetes initiated in neonatal rats (nSTZ) and to determine the pharmacological profile for pain relief. METHODS: nSTZ was used to induce experimental diabetes. Von Frey filaments were used to assess tactile allodynia. Drugs were given by systemic administration. Western blotting and immunohistochemistry were used to determine protein expression and cellular localization. RESULTS: nSTZ produced mild hyperglycemia, weight loss, glucose intolerance, and reduction of nerve conduction velocity of C fibers. Moreover, nSTZ enhanced activating transcription factor 3 (ATF3) immunoreactivity in dorsal root ganglia (DRG) and sciatic nerve of adult rats. ATF3 was found in SGC (GFAP+ cells) surrounding DRG at week 16. Late changes in ATF3 immunoreactivity in DRG correlated with up-regulation of ATF3 and GFAP protein expression. nSTZ increased GFAP and OX-42 immunoreactivity and percentage of hypertrophied and ameboid microglia in the spinal dorsal horn. These changes correlated with the presence of mechanical hypersensitivity (tactile allodynia). Administration of gabapentin (30-100mg/kg, po) and metformin (200mg/kg/day, po for 2 weeks) alleviated tactile allodynia, whereas morphine (1-3mg/kg, ip) had a modest effect. CONCLUSIONS: Results suggest that nSTZ leads to activation of SGC, microglia and astrocytes in DRG and spinal cord. Pharmacological profile in the nSTZ model resembles diabetic neuropathic pain in humans. Our findings support the conclusion that the nSTZ rat model has utility for the study of a long-lasting diabetic neuropathic pain.


Asunto(s)
Diabetes Mellitus Experimental/patología , Neuropatías Diabéticas/patología , Neuralgia/patología , Estreptozocina/farmacología , Factor de Transcripción Activador 3 , Aminas/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Ácidos Ciclohexanocarboxílicos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Gabapentina , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patología , Masculino , Metformina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Dimensión del Dolor/métodos , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Ácido gamma-Aminobutírico/farmacología
6.
PPAR Res ; 2016: 8237264, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069466

RESUMEN

We investigated whether fenofibrate, metformin, and their combination generate cardioprotection in a rat model of type 2 diabetes (T2D) and acute myocardial infarction (AMI). Streptozotocin-induced diabetic- (DB-) rats received 14 days of either vehicle, fenofibrate, metformin, or their combination and immediately after underwent myocardial ischemia/reperfusion (I/R). Fenofibrate plus metformin generated cardioprotection in a DBI/R model, reported as decreased coronary vascular resistance, compared to DBI/R-Vehicle, smaller infarct size, and increased cardiac work. The subchronic treatment with fenofibrate plus metformin increased, compared with DBI/R-Vehicle, total antioxidant capacity, manganese-dependent superoxide dismutase activity (MnSOD), guanosine triphosphate cyclohydrolase I (GTPCH-I) expression, tetrahydrobiopterin : dihydrobiopterin (BH4 : BH2) ratio, endothelial nitric oxide synthase (eNOS) activity, nitric oxide (NO) bioavailability, and decreased inducible NOS (iNOS) activity. These findings suggest that PPARα activation by fenofibrate + metformin, at low doses, generates cardioprotection in a rat model of T2D and AMI and may represent a novel treatment strategy to limit I/R injury in patients with T2D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA