Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(17): 10194-10219, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39142653

RESUMEN

The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas , Metilación de ADN , Dedos de Zinc , Humanos , Animales , Ratones , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/química , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Islas de CpG/genética , ADN/metabolismo , ADN/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Mutación , Unión Proteica , Nucleosomas/metabolismo , Nucleosomas/genética , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Dominios Proteicos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Cara/anomalías , Proteínas Nucleares
2.
Exp Cell Res ; 396(1): 112279, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918898

RESUMEN

Myst family genes encode lysine acetyltransferases that mainly mediate histone acetylation to control transcription, DNA replication and DNA damage response. They form tetrameric complexes with PHD-finger proteins (Brpfs or Jades) and small non-catalytic subunits Ing4/5 and Meaf6. Although all the components of the complex are well-conserved from yeast to mammals, the function of Meaf6 and its homologs has not been elucidated in any species. Here we revealed the role of Meaf6 utilizing inducible Meaf6 KO ES cells. By elimination of Meaf6, proliferation ceased although histone acetylations were largely unaffected. In the absence of Meaf6, one of the Myst family members Myst2/Kat7 increased the ability to interact with PHD-finger proteins. This study is the first indication of the function of Meaf6, which shows it is not essential for HAT activity but modulates the assembly of the Kat7 complex.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Alelos , Animales , Secuencia de Bases , Línea Celular , Proliferación Celular , Replicación del ADN , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Histona Acetiltransferasas/genética , Histonas/genética , Ratones , Anotación de Secuencia Molecular
3.
FASEB J ; 32(3): 1452-1467, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146735

RESUMEN

DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/biosíntesis , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Factor 5 de Diferenciación de Crecimiento/genética , Ratones Noqueados , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología
4.
Development ; 141(2): 269-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24335252

RESUMEN

Ten-eleven translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and 5caC can be excised and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. Genome-wide DNA methylation is erased in the transition from metastable states to the ground state of embryonic stem cells (ESCs) and in migrating primordial germ cells (PGCs), although some resistant regions become demethylated only in gonadal PGCs. Understanding the mechanisms underlying global hypomethylation in naive ESCs and developing PGCs will be useful for realizing cellular pluripotency and totipotency. In this study, we found that PRDM14, the PR domain-containing transcriptional regulator, accelerates the TET-BER cycle, resulting in the promotion of active DNA demethylation in ESCs. Induction of Prdm14 expression transiently elevated 5hmC, followed by the reduction of 5mC at pluripotency-associated genes, germline-specific genes and imprinted loci, but not across the entire genome, which resembles the second wave of DNA demethylation observed in gonadal PGCs. PRDM14 physically interacts with TET1 and TET2 and enhances the recruitment of TET1 and TET2 at target loci. Knockdown of TET1 and TET2 impaired transcriptional regulation and DNA demethylation by PRDM14. The repression of the BER pathway by administration of pharmacological inhibitors of APE1 and PARP1 and the knockdown of thymine DNA glycosylase (TDG) also impaired DNA demethylation by PRDM14. Furthermore, DNA demethylation induced by PRDM14 takes place normally in the presence of aphidicolin, which is an inhibitor of G1/S progression. Together, our analysis provides mechanistic insight into DNA demethylation in naive pluripotent stem cells and developing PGCs.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Metilación de ADN/genética , Metilación de ADN/fisiología , Reparación del ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Dioxigenasas , Técnicas de Silenciamiento del Gen , Impresión Genómica , Células Germinativas/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ARN , Transducción de Señal , Timina ADN Glicosilasa/antagonistas & inhibidores , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Factores de Transcripción/genética
5.
PLoS Genet ; 9(6): e1003574, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23825962

RESUMEN

DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN/genética , Células Madre Embrionarias/citología , Factor de Transcripción GATA4/genética , Animales , Linaje de la Célula , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/crecimiento & desarrollo , Epigénesis Genética , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Microscopía Electrónica de Transmisión de Rastreo
6.
J Exp Med ; 204(4): 715-22, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-17420264

RESUMEN

DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(-/low), c-Kit(+), Sca-1(+), lineage marker(-) (CD34(-) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(-) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Animales , Diferenciación Celular , División Celular , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Eliminación de Gen , Ratones , Ratones Transgénicos
7.
Chromosome Res ; 20(7): 837-48, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23111490

RESUMEN

DNA cytosine methylation (5mC) is indispensable for a number of cellular processes, including retrotransposon silencing, genomic imprinting, and X chromosome inactivation in mammalian development. Recent studies have focused on 5-hydroxymethylcytosine (5hmC), a new epigenetic mark or intermediate in the DNA demethylation pathway. However, 5hmC itself has no role in pluripotency maintenance in mouse embryonic stem cells (ESCs) lacking Dnmt1, 3a, and 3b. Here, we demonstrated that 5hmC accumulated on euchromatic chromosomal bands that were marked with di- and tri-methylated histone H3 at lysine 4 (H3K4me2/3) in mouse ESCs. By contrast, heterochromatin enriched with H3K9me3, including mouse chromosomal G-bands, pericentric repeats, human satellite 2 and 3, and inactive X chromosomes, was not enriched with 5hmC. Therefore, enzymes that hydroxylate the methyl group of 5mC belonging to the Tet family might be excluded from inactive chromatin, which may restrict 5mC to 5hmC conversion in euchromatin to prevent nonselective de novo DNA methylation.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN , Células Madre Embrionarias/citología , Epigénesis Genética , Eucromatina/genética , 5-Metilcitosina/análogos & derivados , Animales , Bromodesoxiuridina/metabolismo , Línea Celular , Cromosomas Humanos X/genética , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Eucromatina/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Silenciador del Gen , Marcadores Genéticos , Impresión Genómica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Retroelementos/genética , Análisis de Secuencia de ADN
8.
Nature ; 450(7171): 908-12, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-17994007

RESUMEN

DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN/metabolismo , Epigénesis Genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Islas de CpG/genética , ADN/química , ADN (Citosina-5-)-Metiltransferasa 1 , Replicación del ADN , Células Madre Embrionarias/metabolismo , Impresión Genómica , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Retroelementos/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas
9.
Genes Cells ; 15(3): 169-79, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20132320

RESUMEN

In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap-Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3-Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a-deficient oocytes was directly inherited to the embryos, but repetitive elements were re-methylated during development. Furthermore, we show that Dnmt3b-deficient cells can contribute to the male and female germ-lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3-related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes.


Asunto(s)
Quimera/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas del Huevo/genética , Impresión Genómica , Integrasas/genética , Glicoproteínas de Membrana/genética , Oocitos/crecimiento & desarrollo , Receptores de Superficie Celular/genética , Animales , Quimera/embriología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Embrión de Mamíferos/metabolismo , Femenino , Secuencias Repetitivas Esparcidas , Masculino , Ratones , Ratones Transgénicos , Oocitos/metabolismo , Glicoproteínas de la Zona Pelúcida , ADN Metiltransferasa 3B
10.
Cells ; 10(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572832

RESUMEN

Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.


Asunto(s)
Momento de Replicación del ADN , ADN/metabolismo , Mamíferos/metabolismo , Metiltransferasas/metabolismo , Animales , Cromosomas de los Mamíferos/metabolismo , Metilación de ADN/genética , Momento de Replicación del ADN/genética , Genoma , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Transcripción Genética
11.
Nature ; 429(6994): 900-3, 2004 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15215868

RESUMEN

Imprinted genes are epigenetically marked during gametogenesis so that they are exclusively expressed from either the paternal or the maternal allele in offspring. Imprinting prevents parthenogenesis in mammals and is often disrupted in congenital malformation syndromes, tumours and cloned animals. Although de novo DNA methyltransferases of the Dnmt3 family are implicated in maternal imprinting, the lethality of Dnmt3a and Dnmt3b knockout mice has precluded further studies. We here report the disruption of Dnmt3a and Dnmt3b in germ cells, with their preservation in somatic cells, by conditional knockout technology. Offspring from Dnmt3a conditional mutant females die in utero and lack methylation and allele-specific expression at all maternally imprinted loci examined. Dnmt3a conditional mutant males show impaired spermatogenesis and lack methylation at two of three paternally imprinted loci examined in spermatogonia. By contrast, Dnmt3b conditional mutants and their offspring show no apparent phenotype. The phenotype of Dnmt3a conditional mutants is indistinguishable from that of Dnmt3L knockout mice, except for the discrepancy in methylation at one locus. These results indicate that both Dnmt3a and Dnmt3L are required for methylation of most imprinted loci in germ cells, but also suggest the involvement of other factors.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Genes Esenciales/genética , Impresión Genómica/genética , Alelos , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Pérdida del Embrión/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Mutagénesis/genética , Fenotipo , Caracteres Sexuales , Espermatogénesis , Espermatogonias/citología , Espermatogonias/metabolismo
12.
Nucleic Acids Res ; 36(Web Server issue): W170-5, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18487274

RESUMEN

Bisulfite sequencing, a standard method for DNA methylation profile analysis, is widely used in basic and clinical studies. This method is limited, however, by the time-consuming data analysis processes required to obtain accurate DNA methylation profiles from the raw sequence output of the DNA sequencer, and by the fact that quality checking of the results can be influenced by a researcher's bias. We have developed an interactive and easy-to-use web-based tool, QUMA (quantification tool for methylation analysis), for the bisulfite sequencing analysis of CpG methylation. QUMA includes most of the data-processing functions necessary for the analysis of bisulfite sequences. It also provides a platform for consistent quality control of the analysis. The QUMA web server is available at http://quma.cdb.riken.jp/.


Asunto(s)
Islas de CpG , Metilación de ADN , Análisis de Secuencia de ADN , Programas Informáticos , Interpretación Estadística de Datos , Internet , Control de Calidad , Análisis de Secuencia de ADN/normas , Sulfitos/química , Interfaz Usuario-Computador
13.
Gene ; 289(1-2): 41-8, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12036582

RESUMEN

DNA methyltransferases, Dnmt3a and Dnmt3b, are required for de novo methylation in embryonic stem (ES) cells and postimplantation embryos. However, the mechanism of de novo methylation is largely unknown. In this study, we have analyzed the sequence specificity of Dnmt3a and Dnmt3b during de novo methylation of murine Moloney leukemia virus provirus DNA in virus-infected ES cells. Provirus DNA from infected wild-type (J1), Dnmt1-/- (c/c), and Dnmt3a3b-/- (3a3b-/-) ES cells were analyzed using the bisulfite sequencing method. We demonstrate that Dnmt3 enzymes methylate predominantly CpG sites in vivo and confirm that Dnmt3 enzymes, but not Dnmt1, are responsible for de novo methylation. However, the sequence context and CpG density do not appear to influence de novo methylation, though strand bias is detectable. Interestingly, non-CpG methylation is detected as a component of de novo methylation. CpA methylation was detected at approximately 1.4% of all sites in J1 and approximately 1.0% in c/c, but only approximately 0.2% in 3a3b-/-. Few methylated CpT or CpC sites were detected. Similar results from nearest neighbor analysis of global endogenous methylation levels indicated a correlation between Dnmt3a and Dnmt3b presence and CpA methylation. These results demonstrate that the Dnmt3 enzymes methylate predominantly CpG sites and at a low frequency CpA sites with no apparent sequence preferences.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN , Embrión de Mamíferos/virología , Virus de la Leucemia Murina de Moloney/genética , Provirus/genética , Células Madre/virología , 5-Metilcitosina , Animales , Islas de CpG/genética , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones , Mutación , Análisis de Secuencia de ADN/métodos , Células Madre/citología , Células Madre/metabolismo , ADN Metiltransferasa 3B
14.
Dev Growth Differ ; 35(6): 711-722, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37281726

RESUMEN

We used RT-PCR (reverse transcription-polymerase chain reaction) and immunocytochemical methods to demonstrate the presence of erythropoietin (Ep) and its receptor (EpR) in postimplantation mouse embryos from the egg-cylinder to the unturned stage. Expression of mRNA for EpR was detected in total RNA from embryos and decidua in all these stages, but Ep mRNA was confined to embryos in the primitive streak stage and beyond and was not detected in the decidua. Staining of Ep and EpR was seen in all tissues, embryo proper and extra-embryonic. Moreover, regions of marked staining of Ep and EpR were detected in the extra-embryonic endoderm, embryonic ectoderm, neural folds and yolk sac, chronologically. No conspicuous differences were present in the staining patterns between Ep and EpR until primitive streak stage; however, after this stage, Ep was predominantly present in the nucleus and EpR on the surface of almost all cells; in the visceral yolk sac endoderm EpR was also detected in adsorption vacuoles and lipid droplets. These studies suggest that Ep first of exogenous and then endogenous origin and EpR of endogenous origin are involved not only in embryogenesis but also in neurogenesis and hematopoiesis in early postimplantation mouse embryos.

15.
Anat Sci Int ; 77(1): 58-63, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12418085

RESUMEN

We have previously demonstrated that mRNAs for erythropoietin and the erythropoietin receptor temporarily express on the visceral yolk sacs on days 9-11 of gestation in mice. In order to investigate the sites of expression, we performed in situ hybridization on visceral yolk sacs. Visceral yolk sacs from 10-day-old mice embryos were frozen in liquid nitrogen, and processed for cryosections. Sections were hybridized with a 35S-labeled RNA probe complementary to mRNA coding for erythropoietin or erythropoietin receptor. Erythropoietin mRNA was detectable in 57.6% of the endodermal epithelial cells, while erythropoietin-receptor mRNA was discerned in 90.8% of the endodermal cells and mesodermal cells, including hemocyteblasts. Moreover, erythropoietin protein was detectable in 52.8% of the endodermal epithelial cells, and on the surface of hemocyteblasts and mesothelial cells. Erythropoietin-receptor protein was discernible in 87.2% of the endodermal cells and in the corresponding mesodermal cells to those where erythropoietin protein was expressed by immunohistochemical examinations. The results indicate that erythropoietin-synthesizing cells are located in half of the endodermal epithelial cells, while the majority of cells in the visceral yolk sac are erythropoietin-receptor-producing cells, indicating that almost all cell population in the visceral yolk sac is erythropoietin-responding cells via both autocrine and paracrine routes.


Asunto(s)
Eritropoyetina/metabolismo , Receptores de Eritropoyetina/metabolismo , Saco Vitelino/metabolismo , Animales , Eritropoyetina/genética , Femenino , Hibridación in Situ , Ratones , Ratones Endogámicos ICR , Embarazo , Receptores de Eritropoyetina/genética , Saco Vitelino/citología
16.
Neuron ; 82(1): 94-108, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24698270

RESUMEN

In the brain, enormous numbers of neurons have functional individuality and distinct circuit specificities. Clustered Protocadherins (Pcdhs), diversified cell-surface proteins, are stochastically expressed by alternative promoter choice and affect dendritic arborization in individual neurons. Here we found that the Pcdh promoters are differentially methylated by the de novo DNA methyltransferase Dnmt3b during early embryogenesis. To determine this methylation's role in neurons, we produced chimeric mice from Dnmt3b-deficient induced pluripotent stem cells (iPSCs). Single-cell expression analysis revealed that individual Dnmt3b-deficient Purkinje cells expressed increased numbers of Pcdh isoforms; in vivo, they exhibited abnormal dendritic arborization. These results indicate that DNA methylation by Dnmt3b at early embryonic stages regulates the probability of expression for the stochastically expressed Pcdh isoforms. They also suggest a mechanism for a rare human recessive disease, the ICF (Immunodeficiency, Centromere instability, and Facial anomalies) syndrome, which is caused by Dnmt3b mutations.


Asunto(s)
Cadherinas/metabolismo , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Familia de Multigenes/genética , Neuronas/fisiología , Regiones Promotoras Genéticas/fisiología , Procesos Estocásticos , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cadherinas/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Ratones Noqueados , Células Madre Pluripotentes/fisiología , ADN Metiltransferasa 3B
18.
Diabetes ; 61(10): 2442-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22721968

RESUMEN

The liver is a major organ of lipid metabolism, which is markedly changed in response to physiological nutritional demand; however, the regulation of hepatic lipogenic gene expression in early life is largely unknown. In this study, we show that expression of glycerol-3-phosphate acyltransferase 1 (GPAT1; Gpam), a rate-limiting enzyme of triglyceride biosynthesis, is regulated in the mouse liver by DNA methylation, an epigenetic modification involved in the regulation of a diverse range of biological processes in mammals. In the neonatal liver, DNA methylation of the Gpam promoter, which is likely to be induced by Dnmt3b, inhibited recruitment of the lipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), whereas in the adult, decreased DNA methylation resulted in active chromatin conformation, allowing recruitment of SREBP-1c. Maternal overnutrition causes decreased Gpam promoter methylation with increased GPAT1 expression and triglyceride content in the pup liver, suggesting that environmental factors such as nutritional conditions can affect DNA methylation in the liver. This study is the first detailed analysis of the DNA-methylation-dependent regulation of the triglyceride biosynthesis gene Gpam, thereby providing new insight into the molecular mechanism underlying the epigenetic regulation of metabolic genes and thus metabolic diseases.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Células 3T3 , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , ADN Metiltransferasa 3B
20.
Curr Biol ; 20(16): 1452-7, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20637626

RESUMEN

DNA methylation regulates development and many epigenetic processes in mammals, and it is required for somatic cell growth and survival. In contrast, embryonic stem (ES) cells can self-renew without DNA methylation. It remains unclear whether any lineage-committed cells can survive without DNA-methylation machineries. Unlike in somatic cells, DNA methylation is dispensable for imprinting and X-inactivation in the extraembryonic lineages. In ES cells, DNA methylation prevents differentiation into the trophectodermal fate. Here, we created triple-knockout (TKO) mouse embryos deficient for the active DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) by nuclear transfer (NT), and we examined their development. In chimeric TKO-NT and WT embryos, few TKO cells were found in the embryo proper, but they contributed to extraembryonic tissues. TKO ES cells showed increasing cell death during their differentiation into epiblast lineages, but not during differentiation into extraembryonic lineages. Furthermore, we successfully established trophoblastic stem cells (ntTS cells) from TKO-NT blastocysts. These TKO ntTS cells could self-renew, and they retained the fundamental gene expression patterns of stem cells. Our findings indicated that extraembryonic-lineage cells can survive and proliferate in the absence of DNA methyltransferases and that a cell's response to the stress of epigenomic damage is cell type dependent.


Asunto(s)
Metilación de ADN , Desarrollo Embrionario/genética , Células Madre Embrionarias/fisiología , Animales , Apoptosis , Diferenciación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Ratones , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA