Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 391(2): 196-206, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24768892

RESUMEN

The broad diversity of neurons is vital to neuronal functions. During vertebrate development, the spinal cord is a site of sensory and motor tasks coordinated by interneurons and the ongoing neurogenesis. In the spinal cord, V2-interneuron (V2-IN) progenitors (p2) develop into excitatory V2a-INs and inhibitory V2b-INs. The balance of these two types of interneurons requires precise control in the number and timing of their production. Here, using zebrafish embryos with altered Notch signaling, we show that different combinations of Notch ligands and receptors regulate two functions: the maintenance of p2 progenitor cells and the V2a/V2b cell fate decision in V2-IN development. Two ligands, DeltaA and DeltaD, and three receptors, Notch1a, Notch1b, and Notch3 redundantly contribute to p2 progenitor maintenance. On the other hand, DeltaA, DeltaC, and Notch1a mainly contribute to the V2a/V2b cell fate determination. A ubiquitin ligase Mib, which activates Notch ligands, acts in both functions through its activation of DeltaA, DeltaC, and DeltaD. Moreover, p2 progenitor maintenance and V2a/V2b fate determination are not distinct temporal processes, but occur within the same time frame during development. In conclusion, V2-IN cell progenitor proliferation and V2a/V2b cell fate determination involve signaling through different sets of Notch ligand-receptor combinations that occur concurrently during development in zebrafish.


Asunto(s)
Interneuronas/citología , Células-Madre Neurales/citología , Neurogénesis/genética , Receptores Notch/genética , Médula Espinal/embriología , Pez Cebra/embriología , Animales , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes/veterinaria , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Morfolinos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3 , Receptores Notch/metabolismo , Transducción de Señal/genética , Médula Espinal/citología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
J Comp Neurol ; 529(8): 2099-2124, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33236346

RESUMEN

Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.


Asunto(s)
Cuerpos Geniculados/citología , Neuronas/citología , Vías Visuales/citología , Animales , Femenino , Masculino , Ratones
3.
Biochem Biophys Res Commun ; 398(1): 118-24, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20558143

RESUMEN

Delta family proteins are transmembrane molecules that bind Notch receptors and activate downstream signaling events in neighboring cells. In addition to serving as Notch ligands, Notch-independent roles for Delta have been suggested but are not fully understood. Here, we demonstrate a previously unrecognized role for Delta in filopodial actin formation. Delta1 and Delta4, but not Delta3, exhibit filopodial protrusive activity, and this activity is independent of Notch signaling. The filopodial activity of Delta1 does not depend on the PDZ-binding domain at the C-terminus; however, the intracellular membrane-proximal region that is anchored to the plasma membrane plays an important role in filopodial activity. We further identified a Notch-independent role of DeltaD in neuronal cell migration in zebrafish. These findings suggest a possible functional link between Notch-independent filopodial activity of Delta and the control of cell motility.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Seudópodos/metabolismo , Receptores Notch/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos y Proteínas de Señalización Intracelular , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Transducción de Señal , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA