Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; 38(5): e14359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39248783

RESUMEN

Trade in undomesticated ornamental animals has rapidly expanded beyond brick-and-mortar retail stores to now include growing numbers of internet marketplaces. The growing volume, diversity, and origins of invasive non-native species in trade challenge already weak national biosecurity policies. Despite widespread focus on vertebrates, many knowledge gaps exist regarding the online global trade of ornamental invertebrates. We conducted the first global assessment of the online trade in and associated invasion risk of freshwater crayfishes, which are increasingly popular aquarium animals. We systematically examined e-commerce marketplaces in multiple languages, scrapping information that included species identity, price, quantity, and shipping designation from each crayfish listing. Next, we combined geographic pathways of shipping associated with online trade (introduction risk) and environmental suitability modeling (establishment risk) to estimate global risk of non-native crayfish invasion risk. We identified hundreds of online marketplaces and thousands of sale listings in 33 countries (5 continents) involving 60 species and representing a selling value of ∼US$1.5 million. Invasion risk of non-native crayfish in trade was widespread, with geographic hotspots coinciding with both elevated opportunities for introduction (greater shipping offerings) and establishment. Precise characterization of the online species trade is fundamental to support new and reformed biosecurity policies, build industry partnerships, and design educational campaigns to prevent species invasions through trade. We found that the taxonomy, geography, and economics of the global online ornamental crayfish trade are vast and require greater attention.


Invasión global y riesgos de bioseguridad a partir del mercado virtual de langostinos de ornato Resumen El comercio de animales ornamentales silvestres se ha expandido rápidamente más allá de las tiendas minoristas para incluir un número creciente de tiendas en línea. El creciente volumen, diversidad y origen de las especies no nativas invasoras en el comercio suponen un reto para las ya débiles políticas nacionales de bioseguridad. A pesar de la gran atención que se presta a los vertebrados, existen muchos vacíos en el conocimiento sobre el comercio mundial en línea de invertebrados ornamentales. Realizamos la primera evaluación mundial del comercio virtual de langostinos de agua dulce, animales de ornato cada vez más populares, y el riesgo de invasión asociado. Analizamos sistemáticamente los mercados de comercio electrónico en varios idiomas, recopilando información que incluía la identidad de las especies, el precio, la cantidad y la designación de envío de cada listado de langostinos. Después combinamos las vías geográficas de envío asociadas al comercio en línea (riesgo de introducción) y los modelos de idoneidad ambiental (riesgo de establecimiento) para estimar el riesgo global de invasión de los langostinos no nativos. Identificamos cientos de mercados en línea y miles de listados de venta en 33 países (cinco continentes) que afectaban a 60 especies y representaban un valor de venta de ∼1.5 millones de dólares estadunidenses. El riesgo de invasión de langostinos no nativos en el comercio fue extenso, con puntos geográficos críticos que coincidían con elevadas oportunidades de introducción (mayores ofertas de envío) y de establecimiento. La caracterización precisa del comercio virtual de especies es fundamental para respaldar políticas de bioseguridad nuevas y reformadas, establecer alianzas con la industria y diseñar campañas educativas para prevenir las invasiones de especies a través del comercio. Descubrimos que la taxonomía, la geografía y la economía del comercio mundial en línea de langostinos de ornato es amplio y requiere mayor atención.


Asunto(s)
Astacoidea , Comercio , Especies Introducidas , Animales , Astacoidea/fisiología , Internet , Bioaseguramiento , Conservación de los Recursos Naturales/métodos , Internacionalidad
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34155095

RESUMEN

As climate change unfolds, changes in population dynamics and species distribution ranges are expected to fundamentally reshuffle communities worldwide. Yet, a comprehensive understanding of the mechanisms and extent of community reorganization remains elusive. This is particularly true in riverine systems, which are simultaneously exposed to changing temperature and streamflow, and where land-use change continues to be a major driver of biodiversity loss. Here, we use the most comprehensive compilation of fish abundance time series to date to provide a global synthesis of climate- and LU-induced effects on riverine biota with respect to changes in species thermal and streamflow affinities. We demonstrate that fish communities are increasingly dominated by thermophilic (warm-water) and limnophilic (slow-water) species. Despite being consistent with trends in water temperature and streamflow observed over recent decades, these community changes appear largely decoupled from each other and show wide spatial variation. We further reveal a synergy among climate- and land use-related drivers, such that community thermophilization is heightened in more human-modified systems. Importantly, communities in which species experience thermal and flow regimes that approach or exceed their tolerance thresholds (high community sensitivity), as well as species-poor communities (low community resilience), also display faster rates of compositional change. This research illustrates that quantifying vulnerability of riverine systems to climate change requires a broadening from a narrower thermal focus to more integrative approaches that account for the spatially varying and multifaceted sensitivity of riverine organisms to the interactive effects of water temperature, hydrology, and other anthropogenic changes.


Asunto(s)
Cambio Climático , Peces/fisiología , Internacionalidad , Ríos , Animales , Geografía , Modelos Teóricos , Temperatura , Factores de Tiempo , Movimientos del Agua
3.
Ecol Lett ; 26(2): 291-301, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36468276

RESUMEN

Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Extinción Biológica , Peces , Especies en Peligro de Extinción
4.
Biol Lett ; 19(3): 20220533, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946133

RESUMEN

Understanding how obligate freshwater organisms colonize seemingly isolated ecosystems has long fascinated ecologists. While recent investigations reveal that fish eggs can survive the digestive tract of birds and successfully hatch once deposited, evidence for avian zoochory in natura is still lacking. Here, we used a 'multiple lines and levels of evidence' approach to demonstrate possible bird-mediated colonization of lakes by the European perch (Perca fluviatilis). We studied a set of newly-formed and isolated artificial lakes that the public is either prohibited to access because of gravel extraction or allowed to access (mainly for angling). The motivating observation is that a large proportion of prohibited-access lakes (greater than 80%) were colonized by European perch even though stocking by anglers and managers never occurred. Three supplementary lines of evidence supported avian zoochory. First, European perch spawning occurs when waterfowl abundance is very high. Second, European perch lays sticky eggs at shallow depths where they can be eaten by waterfowls or attached to their bodies. Third, genetic analyses suggested that European perch actually migrate among lakes, and that distances moved match with daily flight range of foraging waterfowl. Together, multiple lines of evidence point to avian zoochory as a probable pathway for fish colonizing remote or newly-formed freshwater ecosystems.


Asunto(s)
Lagos , Percas , Animales , Ecosistema , Percas/genética , Tracto Gastrointestinal
5.
Oecologia ; 202(3): 617-628, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37493858

RESUMEN

Habitat coupling, where consumers acquire resources from different habitats, plays an important role in ecosystem functioning. In this study, we provide a global investigation of lake habitat coupling by freshwater fishes between littoral (nearshore) and pelagic (open water) zones and elucidate the extent to which magnitude of coupling varies according to environmental context and consumer traits. We consider the influence of lake factors (surface area, depth, shoreline complexity, and annual temperature), relative trophic position of consumers, fish community species richness, and fish morphological traits on habitat coupling by fishes. Using a worldwide dataset consisting of fish stable isotope values (δ13C and δ15N), we developed an index of habitat coupling, and used Bayesian hierarchical and non-hierarchical beta regressions to estimate the effects of environmental lake context and morphological traits on habitat coupling by fishes. Our results show high rates of habitat coupling among fishes globally with marked taxonomic differences in the magnitude and variation. Habitat coupling was higher in lower elevation lakes and in regions characterized by relatively colder climates, whereas other environmental context factors had little or no effects on habitat coupling. Furthermore, habitat coupling was associated with several locomotion and feeding traits, but independent from species maximum body length. Overall, we highlight the prevalence of multiple resources supporting fish populations and suggest future research identify implications to ecosystem functioning that may result from alterations to habitat coupling by fishes.


Asunto(s)
Ecosistema , Lagos , Animales , Teorema de Bayes , Peces , Agua
6.
J Environ Manage ; 329: 117111, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566728

RESUMEN

Understanding biotic assemblage variations resulting from water diversions and other pressures is critical for aquatic ecosystem conservation, but hampered by limited research. Mechanisms driving macroinvertebrate assemblages were determined across five lakes along China's South-to-North Water Diversion Project, an over 900-km water transfer system connecting four river basins. We assessed macroinvertebrate patterns from 59 sites in relation to water quality, climatic, spatial, and hydrologic factors. Macroinvertebrate density, biomass, and species richness increased from upriver to downriver lakes, and were higher during the water transfer period than in the non-water transfer period. Non-native species including Nephtys sp., Paranthura japonica, Potamillacf acuminata, Capitekkidae spp. and Novaculina chinensis, were distributed along the entire study system, some become dominant in upriver lakes. High species turnover occurred in two upriver lakes. Hydrology and water quality are critical factors in shaping these macroinvertebrate patterns. Hydrological disturbance by water transfer boosted macroinvertebrate abundance during the water transfer period while facilitated non-native species dispersals and increased biotic homogenization. This study indicates the need for: 1) an effective ecosystem monitoring system; 2) unified system management standards; 3) external pollution controls; and 4) limiting the dispersal of non-native species.


Asunto(s)
Ecosistema , Calidad del Agua , Animales , Invertebrados , Especies Introducidas , Monitoreo del Ambiente , Hidrología , Ríos
7.
Conserv Biol ; 36(2): e13838, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34622995

RESUMEN

Adaptive capacity (AC)-the ability of a species to cope with or accommodate climate change-is a critical determinant of species vulnerability. Using information on species' AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species' attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species' AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species' innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species' AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.


Aplicación de Evaluaciones de la Capacidad Adaptativa para Informar la Gestión de Recursos Naturales en un Clima Cambiante Resumen La capacidad adaptativa (CA) - la habilidad que tiene una especie para sobrellevar o acomodarse al cambio climático - es una determinante crítica de la vulnerabilidad de una especie. El uso de la información sobre la CA de una especie dentro de la planeación de la conservación es de suma importancia para asegurar resultados exitosos. Identificamos las conexiones entre una lista de atributos de las especies (p. ej.: características, métricas poblacionales, comportamientos) que fueron propuestos recientemente para la evaluación de la CA de las especies y las acciones de gestión que pueden mejorar la CA para las especies que se encuentran en riesgo de extinción. Las acciones de gestión fueron identificadas con base en la evidencia de la literatura, una revisión de acciones usadas en otras guías de adaptación climática y nuestra experiencia colectiva en diferentes campos de la ecología del cambio global y la adaptación climática. Ciertas acciones de gestión respaldan las vías generales de CA de persistir en el lugar o cambiar en el espacio como respuesta al cambio climático contemporáneo. Algunas acciones, como la manipulación genética, pueden usarse para alterar directamente la habilidad que tienen las especies para sobrellevar el cambio climático, mientras que otras acciones pueden mejorar indirectamente la CA al combatir las restricciones ecológicas o antropogénicas que existen sobre la expresión de las habilidades innatas de una especie para adaptarse. Nuestra síntesis es la primera que aborda acciones potenciales de gestión conectadas directamente con la CA. Enfocarse en los atributos de la CA ayuda a mejorar el conocimiento sobre cómo y por qué los aspectos climáticos están afectando a los organismos, así como los mecanismos mediante los cuales las intervenciones de gestión afectan la CA y la vulnerabilidad al cambio climático de la especie. La adaptación climática orientada por la capacidad adaptativa es necesaria para establecer conexiones entre las causas de la vulnerabilidad, la CA y las acciones de gestión propuestas que pueden facilitar la CA y reducir la vulnerabilidad como apoyo a los paradigmas cambiantes de la conservación.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Recursos Naturales
8.
Ecol Lett ; 24(4): 791-801, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33619868

RESUMEN

Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats.


Asunto(s)
Ecosistema , Ríos , Animales , Europa (Continente) , Geografía , Dinámica Poblacional
9.
Proc Biol Sci ; 287(1929): 20200777, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546087

RESUMEN

To better understand how ecosystems are changing, a multifaceted approach to measuring biodiversity that considers species richness (SR) and evolutionary history across spatial scales is needed. Here, we compiled 162 datasets for fish, bird and plant assemblages across the globe and measured how taxonomic and phylogenetic diversity changed at different spatial scales (within site α diversity and between sites spatial ß diversity). Biodiversity change is measured from these datasets in three ways: across land use gradients, from species lists, and through sampling of the same locations across two time periods. We found that local SR and phylogenetic α diversity (Faith's PD (phylogenetic diversity)) increased for all taxonomic groups. However, when measured with a metric that is independent of SR (phylogenetic species variation, PSV), phylogenetic α diversity declined for all taxonomic groups. Land use datasets showed declines in SR, Faith's PD and PSV. For all taxonomic groups and data types, spatial taxonomic and phylogenetic ß diversity decreased when measured with Sorensen dissimilarity and phylogenetic Sorensen dissimilarity, respectively, providing strong evidence of global biotic homogenization. The decoupling of α and ß diversity, as well as taxonomic and phylogenetic diversity, highlights the need for a broader perspective on contemporary biodiversity changes. Conservation and environmental policy decisions thus need to consider biodiversity beyond local SR to protect biodiversity and ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Evolución Biológica , Aves , Peces , Filogenia , Plantas
10.
Glob Chang Biol ; 26(9): 4952-4965, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564461

RESUMEN

The growing human enterprise has sparked greater interest in identifying ecological thresholds in land use conversion beyond which populations or communities demonstrate abrupt nonlinear or substantive change in species composition. Such knowledge remains fundamental to understanding ecosystem resilience to environmental degradation and informing land use planning into the future. Confronting this challenge has been largely limited to inferring thresholds in univariate metrics of species richness and indices of biotic integrity and has largely ignored how land use legacies of the past may shape community responses of today. By leveraging data for 13,069 riverine sites from temperate, subtropical, and boreal climate zones on four continents, we characterize patterns of community change along diverse gradients of urbanization and agricultural land use, and identity threshold values beyond which significant alterations in species composition exists. Our results demonstrate the apparent universality by which freshwater fish communities are sensitive to even low levels of watershed urbanization (range of threshold values: 1%-12%), but consistently higher (and more variable) levels of agricultural development (2%-37%). We demonstrated that fish community compositional thresholds occurred, in general, at lower levels of watershed urbanization and agriculture when compared to threshold responses in species richness. This supports the notion that aggregated taxon-specific responses may better reflect the complexity of assemblage responses to land use development. We further revealed that the ghost of land use past plays an important role in moderating how current-day fish communities respond to land use intensification. Subbasins of the United States experiencing greater rates of past land use change demonstrated higher current-day thresholds. Threshold responses of community composition, such as those identified in our study, illustrate the need for globally coordinated efforts to prioritize country-specific management and policy initiatives that ensure that freshwater fish diversity is not inevitably lost in the future.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura , Animales , Peces , Humanos , Urbanización
11.
Bioscience ; 70(4): 330-342, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32284631

RESUMEN

Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors.

13.
Oecologia ; 191(3): 579-585, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31583451

RESUMEN

In gape-limited predators, gape size restricts the maximum prey size a predator is capable to ingest. However, studies investigating the energetic consequences of this relationship remain scarce. In this study, we tested the hypothesis that gape-size variability influences individual body condition (a common proxy for fitness) in one of the largest freshwater teleost predators, the barramundi. We found that individual barramundi with larger gapes relative to body size had higher body condition values compared to conspecifics with smaller gapes. Body condition was highest soon after the wet season, a period of high feeding activity on productive inundated floodplains, and body condition decreased as the dry season progressed when fish were restricted to dry season remnant habitats. The increased condition obtained during the wet season apparently offsets weight loss through the dry season, as individuals with large gapes were still in better condition than fish with small gapes in the late-dry season. Elucidation of the links between intraspecific variability in traits and performance is a critical challenge in functional ecology. This study emphasizes that even small intraspecific variability in morphological trait values can potentially affect individual fitness within a species' distribution.


Asunto(s)
Perciformes , Conducta Predatoria , Animales , Tamaño Corporal , Peces , Boca
14.
Proc Biol Sci ; 285(1871)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29343597

RESUMEN

Dispersal is a fundamental process defining the distribution of organisms and has long been a topic of inquiry in ecology and evolution. Emerging research points to an interdependency of dispersal with a diverse suite of traits in terrestrial organisms, however the extent to which such dispersal syndromes exist in freshwater species remains uncertain. Here, we test whether dispersal in freshwater fishes (1) is a fixed property of species, and (2) correlates with life-history, morphological, ecological and behavioural traits, using a global dataset of dispersal distances collected from the literature encompassing 116 riverine species and 196 locations. Our meta-analysis revealed a high degree of repeatability and heritability in the dispersal estimates and strong associations with traits related to life-history strategies, energy allocation to reproduction, ecological specialization and swimming skills. Together, these results demonstrate that similar to terrestrial organisms, the multi-dimensional nature of dispersal syndromes in freshwater species offer opportunities for the development of a unifying paradigm of movement ecology that transcend taxonomic and biogeographical realms. The high explanatory power of the models also suggests that trait-based and phylogenetic approaches hold considerable promises to inform conservation efforts in a rapidly changing world.


Asunto(s)
Distribución Animal , Peces/fisiología , Rasgos de la Historia de Vida , Animales , Peces/anatomía & histología , Agua Dulce
15.
Proc Biol Sci ; 285(1888)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282649

RESUMEN

Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed 'portfolio effects', PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982-2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.


Asunto(s)
Biomasa , Ecosistema , Peces/fisiología , Cadena Alimentaria , Animales , Modelos Biológicos , Análisis Espacio-Temporal
16.
Glob Chang Biol ; 24(3): 1175-1185, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29139216

RESUMEN

Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.


Asunto(s)
Biodiversidad , Extinción Biológica , Peces/fisiología , Ríos , Animales , Clima , Peces/clasificación , Centrales Eléctricas , Sudeste de Estados Unidos , Sudoeste de Estados Unidos
17.
Glob Chang Biol ; 23(2): 728-736, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27406402

RESUMEN

Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate-related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade-off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change-related range shifts and extinctions.


Asunto(s)
Aclimatación , Cambio Climático , Peces/fisiología , Animales , Evolución Biológica , Agua Dulce , Filogenia , Temperatura
18.
Glob Chang Biol ; 23(5): 1871-1880, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27761971

RESUMEN

Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce , Animales , Peces , Humanos , Estados Unidos
19.
Ecol Appl ; 27(4): 1338-1350, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28263426

RESUMEN

Modeling riparian plant dynamics along rivers is complicated by the fact that plants have different edaphic and hydrologic requirements at different life stages. With intensifying human demands for water and continued human alteration of rivers, there is a growing need for predicting responses of vegetation to flow alteration, including responses related to climate change and river flow management. We developed a coupled structured population model that combines stage-specific responses of plant guilds with specific attributes of river hydrologic regime. The model uses information on the vital rates of guilds as they relate to different hydrologic conditions (flood, drought, and baseflow), but deliberately omits biotic interactions from the structure (interaction neutral). Our intent was to (1) consolidate key vital rates concerning plant population dynamics and to incorporate these data into a quantitative framework, (2) determine whether complex plant stand dynamics, including biotic interactions, can be predicted from basic vital rates and river hydrology, and (3) project how altered flow regimes might affect riparian communities. We illustrated the approach using five flow-response guilds that encompass much of the river floodplain community: hydroriparian tree, xeroriparian shrub, hydroriparian shrub, mesoriparian meadow, and desert shrub. We also developed novel network-based tools for predicting community-wide effects of climate-driven shifts and deliberately altered flow regimes. The model recovered known patterns of hydroriparian tree vs. xeroriparian shrub dominance, including the relative proportion of these two guilds as a function of river flow modification. By simulating flow alteration scenarios ranging from increased drought to shifts in flood timing, the model predicted that mature hydroriparian forest should be most abundant near the observed natural flow regime. Multiguild sensitivity analysis identified substantial network connectivity (many connected nodes) and biotic linkage (strong pairwise connections between nodes) under natural flow regime conditions. Both connectivity and linkage were substantially reduced under drought and other flow-alteration scenarios, suggesting that community structure is destabilized under such conditions. This structured population modeling approach provides a useful tool for understanding the community-wide effects of altered flow regimes due to climate change and management actions that influence river flow regime.


Asunto(s)
Cambio Climático , Sequías , Fenómenos Fisiológicos de las Plantas , Ríos , Movimientos del Agua , Biota , Colorado , Hidrología , Modelos Biológicos , Dinámica Poblacional
20.
Oecologia ; 184(2): 453-467, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28528391

RESUMEN

Studying the dynamics of species' borders can provide insight into the mechanisms limiting or promoting range expansion in response to environmental change. In the John Day River, Oregon (USA), rising stream temperatures are facilitating the upstream expansion of invasive smallmouth bass Micropterus dolomieu. Here, where smallmouth bass occupy the upstream limit of its thermal tolerance, we explore population structure and seasonal movement patterns to elucidate the environmental conditions and individual traits that define front edge (where individuals reside year-round) and leading edge (where individuals colonize, but may not establish) limits to its upstream distribution. Reporting on a multi-year, spatially extensive riverscape survey, our results show dramatic ebbs and flows of seasonal occupancies due to individual movement with an overall trend of upstream expansion. We revealed distinct front and leading edge invasion extents, each constrained by different ecological conditions. The front edge is largely constrained by the ability for juveniles to survive an overwinter starvation period, whereas the leading edge is associated with adult growth potential and seasonal hydrological conditions. We also found key morphological traits associated with more mobile individuals. By providing mechanistic insight into the factors that promote or limit range expansion of an invasive riverine species, our study enhances the ability to predict future range shifts and provides critical information to managers tasked with restricting further expansion.


Asunto(s)
Lubina , Agua Dulce , Especies Introducidas , Animales , Oregon , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA