Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 521(7550): 85-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25739505

RESUMEN

The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT(+) cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT(-) cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices.


Asunto(s)
Lóbulo Frontal/metabolismo , Globo Pálido/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Acetilcolina/metabolismo , Animales , Antipsicóticos/farmacología , Núcleo Basal de Meynert/citología , Núcleo Basal de Meynert/metabolismo , Colina O-Acetiltransferasa/metabolismo , Fenómenos Electrofisiológicos , Femenino , Lóbulo Frontal/citología , Lóbulo Frontal/efectos de los fármacos , Globo Pálido/citología , Globo Pálido/efectos de los fármacos , Globo Pálido/enzimología , Macaca mulatta , Masculino , Ratones , Vías Nerviosas , Receptores de Dopamina D2/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 108(37): 15414-9, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21825165

RESUMEN

To understand how the nervous system processes information, a map of the connections among neurons would be of great benefit. Here we describe the use of vesicular stomatitis virus (VSV) for tracing neuronal connections in vivo. We made VSV vectors that used glycoprotein (G) genes from several other viruses. The G protein from lymphocytic choriomeningitis virus endowed VSV with the ability to spread transsynaptically, specifically in an anterograde direction, whereas the rabies virus glycoprotein gave a specifically retrograde transsynaptic pattern. The use of an avian G protein fusion allowed specific targeting of cells expressing an avian receptor, which allowed a demonstration of monosynaptic anterograde tracing from defined cells. Synaptic connectivity of pairs of virally labeled cells was demonstrated by using slice cultures and electrophysiology. In vivo infections of several areas in the mouse brain led to the predicted patterns of spread for anterograde or retrograde tracers.


Asunto(s)
Sistema Nervioso Central/citología , Vectores Genéticos/genética , Neuronas/metabolismo , Coloración y Etiquetado , Sinapsis/metabolismo , Vesiculovirus/genética , Animales , Encéfalo/virología , Ojo/virología , Virus de la Coriomeningitis Linfocítica , Ratones , Vías Olfatorias/metabolismo , Vías Olfatorias/virología , Recombinación Genética/genética
3.
Nat Neurosci ; 20(8): 1180-1188, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628101

RESUMEN

Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Fibras Ópticas , Estimulación Luminosa , Animales , Femenino , Masculino , Ratones Transgénicos , Optogenética/métodos , Estimulación Luminosa/métodos , Rodopsina/genética
4.
Neuron ; 86(5): 1174-81, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26050037

RESUMEN

Motor cortex, basal ganglia (BG), and thalamus are arranged in a recurrent loop whose activity guides motor actions. In the dominant model of the function of the BG and their role in Parkinson's disease, direct (dSPNs) and indirect (iSPNs) striatal projection neurons are proposed to oppositely modulate cortical activity via BG outputs to thalamus. Here, we test this model by determining how striatal activity modulates primary motor cortex in awake head-restrained mice. We find that, within 200 ms, dSPN and iSPN activation exert robust and opposite effects on the majority of cortical neurons. However, these effects are heterogeneous, with certain cortical neurons biphasically modulated by iSPN stimulation. Moreover, these striatal effects are diminished when the animal performs a motor action. Thus, the effects of dSPN and iSPN activity on cortex are at times antagonistic, consistent with classic models, whereas in other contexts these effects can be occluded or coactive.


Asunto(s)
Ganglios Basales/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Animales , Estimulación Eléctrica/métodos , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología
5.
Neuron ; 82(6): 1245-54, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24881834

RESUMEN

Optical stimulation and silencing of neural activity is a powerful technique for elucidating the structure and function of neural circuitry. In most in vivo optogenetic experiments, light is delivered into the brain through a single optical fiber. However, this approach limits illumination to a fixed volume of the brain. Here a focused ion beam is used to pattern multiple light windows on a tapered optical fiber. We show that such fibers allow selective and dynamic illumination of different brain regions along the taper. Site selection is achieved by a simple coupling strategy at the fiber input, and the use of a single tapered waveguide minimizes the implant invasiveness. We demonstrate the effectiveness of this approach for multipoint optical stimulation in the mammalian brain in vivo by coupling the fiber to a microelectrode array and performing simultaneous extracellular recording and stimulation at multiple sites in the mouse striatum and cerebral cortex.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Microelectrodos , Fibras Ópticas , Optogenética/métodos , Estimulación Luminosa/métodos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiología , Optogenética/instrumentación
6.
Artículo en Inglés | MEDLINE | ID: mdl-23403489

RESUMEN

Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Neuronas/fisiología , Virus de la Rabia/fisiología , Sinapsis/fisiología , Proteínas del Envoltorio Viral/fisiología , Animales , Animales Recién Nacidos , Células HEK293 , Humanos , Ratones , Neuronas/virología , Técnicas de Cultivo de Órganos , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/química , Sinapsis/virología
7.
PLoS One ; 6(4): e19155, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21544206

RESUMEN

The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Channelrhodopsins , Cuerpo Estriado/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Femenino , Interneuronas/efectos de los fármacos , Masculino , Mecamilamina/farmacología , Ratones , Picrotoxina/farmacología , Receptores Colinérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Escopolamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA