Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(2): 181-190.e9, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38228143

RESUMEN

The early microbial colonization of the gastrointestinal tract can have long-term impacts on development and health. Keystone species, including Bacteroides spp., are prominent in early life and play crucial roles in maintaining the structure of the intestinal ecosystem. However, the process by which a resilient community is curated during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa in early life and regulates a commensal colonization program. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. NanH is required for vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and microbiota mediated through host-derived glycans to promote stable colonization.


Asunto(s)
Ecosistema , Neuraminidasa , Humanos , Bacteroides fragilis , Mucosa Intestinal/microbiología , Polisacáridos
2.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085267

RESUMEN

Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.


Asunto(s)
Interferón Tipo I , Interleucina-27 , Ratones , Animales , Interleucina-27/metabolismo , Linfocitos T Reguladores , Interferón Tipo I/metabolismo , Tolerancia Inmunológica , Factores de Transcripción Forkhead/metabolismo , Bacterias/metabolismo , Células Dendríticas
3.
mSystems ; 9(7): e0051624, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38934546

RESUMEN

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites. IMPORTANCE: Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms.


Asunto(s)
Bacteroides fragilis , Variación Genética , Genoma Bacteriano , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidad , Bacteroides fragilis/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Microbioma Gastrointestinal/genética , Filogenia , Infecciones por Bacteroides/microbiología , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana/genética
4.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948766

RESUMEN

Bacteroides fragilis is a prominent member of the human gut microbiota, playing crucial roles in maintaining gut homeostasis and host health. Although it primarily functions as a beneficial commensal, B. fragilis can become pathogenic. To determine the genetic basis of its duality, we conducted a comparative genomic analysis of 813 B. fragilis strains, representing both commensal and pathogenic origins. Our findings reveal that pathogenic strains emerge across diverse phylogenetic lineages, due in part to rapid gene exchange and the adaptability of the accessory genome. We identified 16 phylogenetic groups, differentiated by genes associated with capsule composition, interspecies competition, and host interactions. A microbial genome-wide association study identified 44 genes linked to extra-intestinal survival and pathogenicity. These findings reveal how genomic diversity within commensal species can lead to the emergence of pathogenic traits, broadening our understanding of microbial evolution in the gut.

5.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316926

RESUMEN

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Bases de Datos Factuales
6.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609270

RESUMEN

The early microbial colonization of the gastrointestinal tract can lead to long-term impacts in development and overall human health. Keystone species, including Bacteroides spp ., play a crucial role in maintaining the structure, diversity, and function of the intestinal ecosystem. However, the process by which a defined and resilient community is curated and maintained during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa and regulates the commensal colonization program during the first weeks of life. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. After examining the dynamics between pioneer gut Bacteroides species in the murine gut, we discovered that NanH enables vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, we demonstrate that NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and the microbiota mediated through host-derived glycans to promote stable intestinal colonization.

7.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187556

RESUMEN

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon that differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 B. fragilis whole genome sequences and report differential gene abundance to further support the recent proposal that divisions I and II represent separate species. In division I strains, we identify an increased abundance of genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for classifying divisions I and II B. fragilis strains as distinct species, and our comparative genomic analysis reveals their niche-specific roles.

8.
Res Sq ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577622

RESUMEN

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

9.
Nutrients ; 13(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578800

RESUMEN

Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals' microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.


Asunto(s)
Microbioma Gastrointestinal , Glucanos/química , Glucanos/metabolismo , Adulto , Dieta , Carbohidratos de la Dieta/análisis , Fibras de la Dieta/análisis , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Fermentación , Glucosa/química , Glucosa/metabolismo , Glicósidos/química , Humanos , Masculino , ARN Ribosómico 16S/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA