Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619102

RESUMEN

Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/ß-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/ß-tubulin-GB1 complex.


Asunto(s)
Antineoplásicos/síntesis química , Proteínas Bacterianas/síntesis química , Productos Biológicos/síntesis química , Depsipéptidos/síntesis química , Microtúbulos/efectos de los fármacos , Moduladores de Tubulina/síntesis química , Tubulina (Proteína)/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacología , Sitios de Unión , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Línea Celular Tumoral , Colchicina/química , Colchicina/farmacología , Cristalografía por Rayos X , Cianobacterias/química , Depsipéptidos/aislamiento & purificación , Depsipéptidos/farmacología , Descubrimiento de Drogas , Células HCT116 , Humanos , Maitansina/química , Maitansina/farmacología , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pironas/química , Pironas/farmacología , Taxoides/química , Taxoides/farmacología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/aislamiento & purificación , Moduladores de Tubulina/farmacología , Alcaloides de la Vinca/química , Alcaloides de la Vinca/farmacología
2.
Angew Chem Int Ed Engl ; 62(5): e202212190, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36281761

RESUMEN

We describe the total synthesis of the macrodiolide C(13)/C(13')-bis(desmethyl)disorazole Z through double inter-/intramolecular Stille cross-coupling of a monomeric vinyl stannane/vinyl iodide precursor to form the macrocycle. The key step in the synthesis of this precursor was a stereoselective aldol reaction of a formal Evans acetate aldol product with crotonaldehyde. As demonstrated by X-ray crystallography, the binding mode of C(13)/C(13')-bis(desmethyl)disorazole Z to tubulin is virtually identical with that of the natural product disorazole Z. Likewise, C(13)/C(13')-bis(desmethyl)disorazole Z inhibits tubulin assembly with at least the same potency as disorazole Z and it appears to be a more potent cell growth inhibitor.


Asunto(s)
Macrólidos , Tubulina (Proteína) , Aldehídos , Estereoisomerismo
3.
Org Biomol Chem ; 21(1): 153-162, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472095

RESUMEN

The disordered tubulin C-terminal tail (CTT), which possesses a higher degree of heterogeneity, is the target for the interaction of many proteins and cellular components. Compared to the seven well-described binding sites of microtubule-targeting agents (MTAs) that localize on the globular tubulin core, tubulin CTT is far less explored. Therefore, tubulin CTT can be regarded as a novel site for the development of MTAs with distinct biochemical and cell biological properties. Here, we designed and synthesized linear and cyclic peptides containing multiple arginines (RRR), which are complementary to multiple acidic residues in tubulin CTT. Some of them showed moderate induction and promotion of tubulin polymerization. The most potent macrocyclic compound 1f was found to bind to tubulin CTT and thus exert its bioactivity. Such RRR containing compounds represent a starting point for the discovery of tubulin CTT-targeting agents with therapeutic potential.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408808

RESUMEN

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Mebendazol , Animales , Antivirales/farmacología , Mamíferos , Mebendazol/farmacología , Microtúbulos , SARS-CoV-2 , Tubulina (Proteína)
5.
Cancer Cell Int ; 20: 170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32467666

RESUMEN

BACKGROUND: Drug resistance and chemotherapy-induced peripheral neuropathy continue to be significant problems in the successful treatment of acute lymphoblastic leukemia (ALL). 5,7-Dibromo-N-alkylisatins, a class of potent microtubule destabilizers, are a promising alternative to traditionally used antimitotics with previous demonstrated efficacy against solid tumours in vivo and ability to overcome P-glycoprotein (P-gp) mediated drug resistance in lymphoma and sarcoma cell lines in vitro. In this study, three di-brominated N-alkylisatins were assessed for their ability to retain potency in vincristine (VCR) and 2-methoxyestradiol (2ME2) resistant ALL cell lines. For the first time, in vitro neurotoxicity was also investigated in order to establish their suitability as candidate drugs for future use in ALL treatment. METHODS: Vincristine resistant (CEM-VCR R) and 2-methoxyestradiol resistant (CEM/2ME2-28.8R) ALL cell lines were used to investigate the ability of N-alkylisatins to overcome chemoresistance. Interaction of N-alkylisatins with tubulin at the the colchicine-binding site was studied by competitive assay using the fluorescent colchicine analogue MTC. Human neuroblastoma SH-SY5Y cells differentiated into a morphological and functional dopaminergic-like neurotransmitter phenotype were used for neurotoxicity and neurofunctional assays. Two-way ANOVA followed by a Tukey's post hoc test or a two-tailed paired t test was used to determine statistical significance. RESULTS: CEM-VCR R and CEM/2ME2-28.8R cells displayed resistance indices of > 100 to VCR and 2-ME2, respectively. CEM-VCR R cells additionally displayed a multi-drug resistant phenotype with significant cross resistance to vinblastine, 2ME2, colchicine and paclitaxel consistent with P-gp overexpression. Despite differences in resistance mechanisms observed between the two cell lines, the N-alkylisatins displayed bioequivalent dose-dependent cytotoxicity to that of the parental control cell line. The N-alkylisatins proved to be significantly less neurotoxic towards differentiated SH-SY5Y cells than VCR and vinblastine, evidenced by increased neurite length and number of neurite branch points. Neuronal cells treated with 5,7-dibromo-N-(p-hydroxymethylbenzyl)isatin showed significantly higher voltage-gated sodium channel function than those treated with Vinca alkaloids, strongly supportive of continued action potential firing. CONCLUSIONS: The N-alkylisatins are able to retain cytotoxicity towards ALL cell lines with functionally distinct drug resistance mechanisms and show potential for reduced neurotoxicity. As such they pose as promising candidates for future implementation into anticancer regimes for ALL. Further in vivo studies are therefore warranted.

6.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897704

RESUMEN

It has been proposed that one of the mechanisms of taxane-site ligand-mediated tubulin activation is modulation of the structure of a switch element (the M-loop) from a disordered form in dimeric tubulin to a folded helical structure in microtubules. Here, we used covalent taxane-site ligands, including cyclostreptin, to gain further insight into this mechanism. The crystal structure of cyclostreptin-bound tubulin reveals covalent binding to ßHis229, but no stabilization of the M-loop. The capacity of cyclostreptin to induce microtubule assembly compared to other covalent taxane-site agents demonstrates that the induction of tubulin assembly is not strictly dependent on M-loop stabilization. We further demonstrate that most covalent taxane-site ligands are able to partially overcome drug resistance mediated by ßIII-tubulin (ßIII) overexpression in HeLa cells, and compare their activities to pironetin, an interfacial covalent inhibitor of tubulin assembly that displays invariant growth inhibition in these cells. Our findings suggest a relationship between a diminished interaction of taxane-site ligands with ßIII-tubulin and ßIII tubulin-mediated drug resistance. This supports the idea that overexpression of ßIII increases microtubule dynamicity by counteracting the enhanced microtubule stability promoted by covalent taxane-site binding ligands.


Asunto(s)
Microtúbulos/química , Compuestos Policíclicos/química , Tubulina (Proteína)/química , Resistencia a Antineoplásicos , Ácido Edético/química , Células HeLa , Humanos , Espectrometría de Masas , Taxoides/química
7.
ACS Omega ; 8(4): 3540-3550, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743020

RESUMEN

Microtubules (MTs) are essential cellular machines built from concatenated αß-tubulin heterodimers. They are responsible for two central and opposite functions from the dynamic point of view: scaffolding (static filaments) and force generation (dynamic MTs). These roles engage multiple physiological processes, including cell shape, polarization, division and movement, and intracellular long-distance transport. At the most basic level, the MT regulation is chemical because GTP binding and hydrolysis have the ability to promote assembly and disassembly in the absence of any other constraint. Due to the stochastic GTP hydrolysis, a chemical gradient from GTP-bound to GDP-bound tubulin is created at the MT growing end (GTP cap), which is translated into a cascade of structural regulatory changes known as MT maturation. This is an area of intense research, and several models have been proposed based on information mostly gathered from macromolecular crystallography and cryo-electron microscopy studies. However, these classical structural biology methods lack temporal resolution and can be complemented, as shown in this mini-review, by other approaches such as time-resolved fiber diffraction and computational modeling. Together with studies on structurally similar tubulins from the prokaryotic world, these inputs can provide novel insights on MT assembly, dynamics, and the GTP cap.

8.
Structure ; 31(1): 88-99.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462501

RESUMEN

Taxanes are microtubule-stabilizing agents used in the treatment of many solid tumors, but they often involve side effects affecting the peripheral nervous system. It has been proposed that this could be related to structural modifications on the filament upon drug binding. Alternatively, laulimalide and peloruside bind to a different site also inducing stabilization, but they have not been exploited in clinics. Here, we use a combination of the parental natural compounds and derived analogs to unravel the stabilization mechanism through this site. These drugs settle lateral interactions without engaging the M loop, which is part of the key and lock involved in the inter-protofilament contacts. Importantly, these drugs can modulate the angle between protofilaments, producing microtubules of different diameters. Among the compounds studied, we have found some showing low cytotoxicity and able to induce stabilization without compromising microtubule native structure. This opens the window of new applications for microtubule-stabilizing agents beyond cancer treatment.


Asunto(s)
Lactonas , Tubulina (Proteína) , Lactonas/farmacología , Tubulina (Proteína)/metabolismo , Excipientes/análisis , Excipientes/metabolismo , Sitios de Unión , Microtúbulos/metabolismo
9.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781579

RESUMEN

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for pharmaceutics which could potentiate its therapeutic effect. We screened a chemical library and selected Carba1, a carbazole, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. Catastrophe induction by Carba1 promotes paclitaxel binding to microtubule ends, providing a mechanistic explanation of the observed synergy. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel binding to dynamic microtubules can be transposed to in vivo mouse cancer treatments, paving the way for new therapeutic strategies combining low doses of microtubule targeting agents with opposite mechanisms of action.

10.
J Biol Chem ; 277(45): 43262-70, 2002 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-12215443

RESUMEN

The stability, refolding, and assembly properties of FtsZ cell division proteins from Methanococcus jannaschii and Escherichia coli have been investigated. Their guanidinium chloride unfolding has been studied by circular dichroism spectroscopy. FtsZ from E. coli and tubulin released the bound guanine nucleotide, coinciding with an initial unfolding stage at low denaturant concentrations, followed by unfolding of the apoprotein. FtsZ from M. jannaschii released its nucleotide without any detectable secondary structural change. It unfolded in an apparently two-state transition at larger denaturant concentrations. Isolated FtsZ polypeptide chains were capable of spontaneous refolding and GTP-dependent assembly. The homologous eukaryotic tubulin monomers misfold in solution, but fold within the cytosolic chaperonin CCT. Analysis of the extensive tubulin loop insertions in the FtsZ/tubulin common core and of the intermolecular contacts in model microtubules and tubulin-CCT complexes shows a loop insertion present at every element of lateral protofilament contact and at every contact of tubulin with CCT (except at loop T7). The polymers formed by purified FtsZ have a distinct limited protofilament association in comparison with microtubules. We propose that the loop insertions of tubulin and its CCT-assisted folding coevolved with the lateral association interfaces responsible for extended two-dimensional polymerization into microtubule polymers.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto , Escherichia coli/metabolismo , Methanococcus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/ultraestructura , Dicroismo Circular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Cinética , Datos de Secuencia Molecular , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA