Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(9): 11385-11395, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33590763

RESUMEN

Solid-state dewetting (SSD) on patterned substrates is a straightforward method for fabricating ordered arrays of metallic nanoparticles on surfaces. However, a drawback of this procedure is that the patterning of substrates usually requires time-consuming and expensive two-dimensional (2D) fabrication methods. Nanostructured thin films deposited by oblique angle deposition (OAD) present at the surface a form of stochastically arranged periodic bundles of nanocolumns that might act as a patterned template for fabricating arrays of nanoparticles by SSD. In this work, we explore this concept and investigate the effect of three different types of OAD SiO2 thin films on the SSD of Au deposited on their surface. We demonstrate that the size and spatial distribution of the particles can be tailored through the surface morphology of these OAD film substrates. It has been found that the SSD of the evaporated Au layer gives rise to a bimodal size distribution of particles. A majority of them appeared as mesoparticles with sizes ≳100 nm and the rest as nanoparticles with ∼10 nm, respectively, located either on top of the nanocolumns following their lateral distribution (i.e., resulting from a patterning effect) or incorporated inside the open mesopores existing among them. Moreover, on the SiO2-OAD thin films where interconnected nanocolumnar bundles arrange in the form of discrete motifs, the patterning effect gave rise to the formation of approximately one Au mesoparticle per motif, which is one of the assets of patterned SSD. The morphological, optical (i.e., plasmon resonance), and crystalline structural characteristics of Au mesoparticles suggest that the interplay between a discontinuous nanocolumnar surface acting as a template and the poor adhesion of Au onto SiO2 are key factors for the observed template effect controlling the SSD on the surface of OAD thin films.

2.
ACS Appl Mater Interfaces ; 13(16): 19148-19158, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856758

RESUMEN

In this work, we have developed a new kind of nanocolumnar birefringent Bragg microcavity (BBM) that, tailored by oblique angle deposition, behaves as a selective transducer of volatile organic compounds (VOCs). Unlike the atomic lattice origin of birefringence in anisotropic single crystals, in the BBM, it stems from an anisotropic self-organization at the nanoscale of the voids and structural elements of the layers. The optical adsorption isotherms recorded upon exposure of these nanostructured systems to water vapor and VOCs have revealed a rich yet unexplored phenomenology linked to their optical activity that provides both capacity for vapor identification and partial pressure determination. This photonic response has been reproduced with a theoretical model accounting for the evolution of the form birefringence of the individual layers upon vapor condensation in nanopores and internanocolumnar voids. BBMs that repel water vapor but are accessible to VOCs have been also developed through grafting of their internal surfaces with perfluorooctyltriethoxysilane molecules. These nanostructured photonic systems are proposed for the development of transducers that, operating under environmental conditions, may respond specifically to VOCs without any influence by the degree of humidity of the medium.

3.
Mater Horiz ; 8(2): 515-524, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821267

RESUMEN

Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.


Asunto(s)
Nanoestructuras , Conductividad Eléctrica , Electricidad , Nanotecnología , Sonido
4.
ACS Nano ; 10(1): 1256-64, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26653767

RESUMEN

Bragg microcavities (BMs) formed by the successive stacking of nanocolumnar porous SiO2 and TiO2 layers with slanted, zigzag, chiral, and vertical configurations are prepared by physical vapor deposition at oblique angles while azimuthally varying the substrate orientation during the multilayer growth. The slanted and zigzag BMs act as wavelength-selective optical retarders when they are illuminated with linearly polarized light, while no polarization dependence is observed for the chiral and vertical cavities. This distinct optical behavior is attributed to a self-nanostructuration mechanism involving a fence-bundling association of nanocolumns as observed by focused ion beam scanning electron microscopy in the slanted and zigzag microcavities. The outstanding retarder response of the optically active BMs can be effectively modulated by dynamic infiltration of nano- and mesopores with liquids of different refraction indices acting as a switch of the polarization behavior. The unprecedented polarization and tunable optofluidic properties of these nanostructured photonic systems have been successfully simulated with a simple model that assumes a certain birefringence for the individual stacked layers and accounts for the light interference phenomena developed in the BMs. The possibilities of this type of self-arranged nanostructured and optically active BMs for liquid sensing and monitoring applications are discussed.

5.
ACS Appl Mater Interfaces ; 6(15): 11924-31, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25007108

RESUMEN

We present a straightforward procedure of self-surface patterning with potential applications as large area gratings, invisible labeling, optomechanical transducers, or smart windows. The methodology is based in the formation of parallel micrometric crack patterns when polydimethylsiloxane foils coated with tilted nanocolumnar SiO2 thin films are manually bent. The SiO2 thin films are grown by glancing angle deposition at room temperature. The results indicate that crack spacing is controlled by the film nanostructure independently of the film thickness and bending curvature. They also show that the in-plane microstructural anisotropy of the SiO2 films due to column association perpendicular to the growth direction determines the anisotropic formation of parallel cracks along two main axes. These self-organized patterned foils are completely transparent and work as customized reversible diffraction gratings under mechanical activation.

6.
ACS Appl Mater Interfaces ; 5(14): 6743-50, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23781881

RESUMEN

Porous Bragg microcavities formed by stacking a series of porous nanocolumnar layers with alternate low (SiO2) and high (TiO2) refractive index materials have been prepared by physical vapor deposition at glancing angles (GLAD). By strictly controlling the porosity and refractive index of the individual films, as well as the relative orientation of the nanocolumns from one layer to the next, very porous and nondispersive high optical quality microcavities have been manufactured. These photonic structures have been implemented into responsive devices to characterize liquids, mixtures of liquids, or solutions flowing through them. The large displacements observed in the optical spectral features (Bragg reflector gap and resonant peak) of the photonic structures have been quantitatively correlated by optical modeling with the refractive index of the circulating liquids. Experiments carried out with different glucose and NaCl solutions and mixtures of water plus glycerol illustrate the potentialities of these materials to serve as optofluidic devices to determine the concentration of solutions or the proportion of two phases in a liquid mixture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA