Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37571622

RESUMEN

Forecasting energy consumption models allow for improvements in building performance and reduce energy consumption. Energy efficiency has become a pressing concern in recent years due to the increasing energy demand and concerns over climate change. This paper addresses the energy consumption forecast as a crucial ingredient in the technology to optimize building system operations and identifies energy efficiency upgrades. The work proposes a modified multi-head transformer model focused on multi-variable time series through a learnable weighting feature attention matrix to combine all input variables and forecast building energy consumption properly. The proposed multivariate transformer-based model is compared with two other recurrent neural network models, showing a robust performance while exhibiting a lower mean absolute percentage error. Overall, this paper highlights the superior performance of the modified transformer-based model for the energy consumption forecast in a multivariate step, allowing it to be incorporated in future forecasting tasks, allowing for the tracing of future energy consumption scenarios according to the current building usage, playing a significant role in creating a more sustainable and energy-efficient building usage.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420765

RESUMEN

In a clinical context, physicians usually take into account information from more than one data modality when making decisions regarding cancer diagnosis and treatment planning. Artificial intelligence-based methods should mimic the clinical method and take into consideration different sources of data that allow a more comprehensive analysis of the patient and, as a consequence, a more accurate diagnosis. Lung cancer evaluation, in particular, can benefit from this approach since this pathology presents high mortality rates due to its late diagnosis. However, many related works make use of a single data source, namely imaging data. Therefore, this work aims to study the prediction of lung cancer when using more than one data modality. The National Lung Screening Trial dataset that contains data from different sources, specifically, computed tomography (CT) scans and clinical data, was used for the study, the development and comparison of single-modality and multimodality models, that may explore the predictive capability of these two types of data to their full potential. A ResNet18 network was trained to classify 3D CT nodule regions of interest (ROI), whereas a random forest algorithm was used to classify the clinical data, with the former achieving an area under the ROC curve (AUC) of 0.7897 and the latter 0.5241. Regarding the multimodality approaches, three strategies, based on intermediate and late fusion, were implemented to combine the information from the 3D CT nodule ROIs and the clinical data. From those, the best model-a fully connected layer that receives as input a combination of clinical data and deep imaging features, given by a ResNet18 inference model-presented an AUC of 0.8021. Lung cancer is a complex disease, characterized by a multitude of biological and physiological phenomena and influenced by multiple factors. It is thus imperative that the models are capable of responding to that need. The results obtained showed that the combination of different types may have the potential to produce more comprehensive analyses of the disease by the models.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Inteligencia Artificial , Detección Precoz del Cáncer/métodos , Tomografía Computarizada por Rayos X/métodos , Pulmón/patología
3.
Eur Surg Res ; 63(1): 3-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34038908

RESUMEN

INTRODUCTION: Breast volume estimation is considered crucial for breast cancer surgery planning. A single, easy, and reproducible method to estimate breast volume is not available. This study aims to evaluate, in patients proposed for mastectomy, the accuracy of the calculation of breast volume from a low-cost 3D surface scan (Microsoft Kinect) compared to the breast MRI and water displacement technique. MATERIAL AND METHODS: Patients with a Tis/T1-T3 breast cancer proposed for mastectomy between July 2015 and March 2017 were assessed for inclusion in the study. Breast volume calculations were performed using a 3D surface scan and the breast MRI and water displacement technique. Agreement between volumes obtained with both methods was assessed with the Spearman and Pearson correlation coefficients. RESULTS: Eighteen patients with invasive breast cancer were included in the study and submitted to mastectomy. The level of agreement of the 3D breast volume compared to surgical specimens and breast MRI volumes was evaluated. For mastectomy specimen volume, an average (standard deviation) of 0.823 (0.027) and 0.875 (0.026) was obtained for the Pearson and Spearman correlations, respectively. With respect to MRI annotation, we obtained 0.828 (0.038) and 0.715 (0.018). DISCUSSION: Although values obtained by both methodologies still differ, the strong linear correlation coefficient suggests that 3D breast volume measurement using a low-cost surface scan device is feasible and can approximate both the MRI breast volume and mastectomy specimen with sufficient accuracy. CONCLUSION: 3D breast volume measurement using a depth-sensor low-cost surface scan device is feasible and can parallel MRI breast and mastectomy specimen volumes with enough accuracy. Differences between methods need further development to reach clinical applicability. A possible approach could be the fusion of breast MRI and the 3D surface scan to harmonize anatomic limits and improve volume delimitation.


Asunto(s)
Neoplasias de la Mama , Mama/diagnóstico por imagen , Mama/cirugía , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Mastectomía/métodos
4.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591132

RESUMEN

Lung cancer is a highly prevalent pathology and a leading cause of cancer-related deaths. Most patients are diagnosed when the disease has manifested itself, which usually is a sign of lung cancer in an advanced stage and, as a consequence, the 5-year survival rates are low. To increase the chances of survival, improving the cancer early detection capacity is crucial, for which computed tomography (CT) scans represent a key role. The manual evaluation of the CTs is a time-consuming task and computer-aided diagnosis (CAD) systems can help relieve that burden. The segmentation of the lung is one of the first steps in these systems, yet it is very challenging given the heterogeneity of lung diseases usually present and associated with cancer development. In our previous work, a segmentation model based on a ResNet34 and U-Net combination was developed on a cross-cohort dataset that yielded good segmentation masks for multiple pathological conditions but misclassified some of the lung nodules. The multiple datasets used for the model development were originated from different annotation protocols, which generated inconsistencies for the learning process, and the annotations are usually not adequate for lung cancer studies since they did not comprise lung nodules. In addition, the initial datasets used for training presented a reduced number of nodules, which was showed not to be enough to allow the segmentation model to learn to include them as a lung part. In this work, an objective protocol for the lung mask's segmentation was defined and the previous annotations were carefully reviewed and corrected to create consistent and adequate ground-truth masks for the development of the segmentation model. Data augmentation with domain knowledge was used to create lung nodules in the cases used to train the model. The model developed achieved a Dice similarity coefficient (DSC) above 0.9350 for all test datasets and it showed an ability to cope, not only with a variety of lung patterns, but also with the presence of lung nodules as well. This study shows the importance of using consistent annotations for the supervised learning process, which is a very time-consuming task, but that has great importance to healthcare applications. Due to the lack of massive datasets in the medical field, which consequently brings a lack of wide representativity, data augmentation with domain knowledge could represent a promising help to overcome this limitation for learning models development.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Diagnóstico por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tórax
5.
Chaos ; 31(5): 053118, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34240956

RESUMEN

In this study, we used machine learning techniques to reconstruct the wavelength dependence of the absorption coefficient of human normal and pathological colorectal mucosa tissues. Using only diffuse reflectance spectra from the ex vivo mucosa tissues as input to algorithms, several approaches were tried before obtaining good matching between the generated absorption coefficients and the ones previously calculated for the mucosa tissues from invasive experimental spectral measurements. Considering the optimized match for the results generated with the multilayer perceptron regression method, we were able to identify differentiated accumulation of lipofuscin in the absorption coefficient spectra of both mucosa tissues as we have done before with the corresponding results calculated directly from invasive measurements. Considering the random forest regressor algorithm, the estimated absorption coefficient spectra almost matched the ones previously calculated. By subtracting the absorption of lipofuscin from these spectra, we obtained similar hemoglobin ratios at 410/550 nm: 18.9-fold/9.3-fold for the healthy mucosa and 46.6-fold/24.2-fold for the pathological mucosa, while from direct calculations, those ratios were 19.7-fold/10.1-fold for the healthy mucosa and 33.1-fold/17.3-fold for the pathological mucosa. The higher values obtained in this study indicate a higher blood content in the pathological samples used to measure the diffuse reflectance spectra. In light of such accuracy and sensibility to the presence of hidden absorbers, with a different accumulation between healthy and pathological tissues, good perspectives become available to develop minimally invasive spectroscopy methods for in vivo early detection and monitoring of colorectal cancer.


Asunto(s)
Algoritmos , Neoplasias Colorrectales , Neoplasias Colorrectales/diagnóstico , Humanos , Aprendizaje Automático , Análisis Espectral
6.
Sensors (Basel) ; 18(1)2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29315279

RESUMEN

Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained.


Asunto(s)
Mastectomía Segmentaria , Mama , Neoplasias de la Mama , Humanos , Mastectomía
7.
NPJ Precis Oncol ; 8(1): 123, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816569

RESUMEN

Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.

8.
J Biophotonics ; : e202300466, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318753

RESUMEN

With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (µa [λ]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental µa (λ) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components. It has been shown that with the development of cancer, the concentrations of proteins, DNA, oxygenated hemoglobin, lipids, and lipofuscin increase, and the concentration of melanin decreases. Future studies based on minimally invasive spectral measurements will allow cancer diagnosis using the proposed approach.

9.
Comput Methods Programs Biomed ; 242: 107806, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832428

RESUMEN

BACKGROUND AND OBJECTIVE: Traumatic Brain Injury (TBI) is one of the leading causes of injury-related mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly heterogeneous both in causes and consequences making more complex the medical interpretation and prognosis. Gathering clinical, demographic, and laboratory data to perform a prognosis requires time and skill in several clinical specialties. Artificial intelligence (AI) methods can take advantage of existing data by performing helpful predictions and guiding physicians toward a better prognosis and, consequently, better healthcare. The objective of this work was to develop learning models and evaluate their capability of predicting the mortality of TBI. The predictive model would allow the early assessment of the more serious cases and scarce medical resources can be pointed toward the patients who need them most. METHODS: Long Short Term Memory (LSTM) and Transformer architectures were tested and compared in performance, coupled with data imbalance, missing data, and feature selection strategies. From the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, a cohort of TBI patients was selected and an analysis of the first 48 hours of multiple time series sequential variables was done to predict hospital mortality. RESULTS: The best performance was obtained with the Transformer architecture, achieving an AUC of 0.907 with the larger group of features and trained with class proportion class weights and binary cross entropy loss. CONCLUSIONS: Using the time series sequential data, LSTM and Transformers proved to be both viable options for predicting TBI hospital mortality in 48 hours after admission. Overall, using sequential deep learning models with time series data to predict TBI mortality is viable and can be used as a helpful indicator of the well-being of patients.


Asunto(s)
Inteligencia Artificial , Lesiones Traumáticas del Encéfalo , Humanos , Factores de Tiempo , Lesiones Traumáticas del Encéfalo/diagnóstico , Pronóstico , Cuidados Críticos
10.
Sci Rep ; 13(1): 11821, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479864

RESUMEN

Emerging evidence of the relationship between the microbiome composition and the development of numerous diseases, including cancer, has led to an increasing interest in the study of the human microbiome. Technological breakthroughs regarding DNA sequencing methods propelled microbiome studies with a large number of samples, which called for the necessity of more sophisticated data-analytical tools to analyze this complex relationship. The aim of this work was to develop a machine learning-based approach to distinguish the type of cancer based on the analysis of the tissue-specific microbial information, assessing the human microbiome as valuable predictive information for cancer identification. For this purpose, Random Forest algorithms were trained for the classification of five types of cancer-head and neck, esophageal, stomach, colon, and rectum cancers-with samples provided by The Cancer Microbiome Atlas database. One versus all and multi-class classification studies were conducted to evaluate the discriminative capability of the microbial data across increasing levels of cancer site specificity, with results showing a progressive rise in difficulty for accurate sample classification. Random Forest models achieved promising performances when predicting head and neck, stomach, and colon cancer cases, with the latter returning accuracy scores above 90% across the different studies conducted. However, there was also an increased difficulty when discriminating esophageal and rectum cancers, failing to differentiate with adequate results rectum from colon cancer cases, and esophageal from head and neck and stomach cancers. These results point to the fact that anatomically adjacent cancers can be more complex to identify due to microbial similarities. Despite the limitations, microbiome data analysis using machine learning may advance novel strategies to improve cancer detection and prevention, and decrease disease burden.


Asunto(s)
Neoplasias del Colon , Microbiota , Neoplasias del Recto , Neoplasias Gástricas , Humanos , Neoplasias del Colon/diagnóstico , Neoplasias Gástricas/diagnóstico , Aprendizaje Automático , Microbiota/genética
11.
PLoS One ; 18(8): e0289365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535564

RESUMEN

BACKGROUND: Breast cancer therapy improved significantly, allowing for different surgical approaches for the same disease stage, therefore offering patients different aesthetic outcomes with similar locoregional control. The purpose of the CINDERELLA trial is to evaluate an artificial-intelligence (AI) cloud-based platform (CINDERELLA platform) vs the standard approach for patient education prior to therapy. METHODS: A prospective randomized international multicentre trial comparing two methods for patient education prior to therapy. After institutional ethics approval and a written informed consent, patients planned for locoregional treatment will be randomized to the intervention (CINDERELLA platform) or controls. The patients in the intervention arm will use the newly designed web-application (CINDERELLA platform, CINDERELLA APProach) to access the information related to surgery and/or radiotherapy. Using an AI system, the platform will provide the patient with a picture of her own aesthetic outcome resulting from the surgical procedure she chooses, and an objective evaluation of this aesthetic outcome (e.g., good/fair). The control group will have access to the standard approach. The primary objectives of the trial will be i) to examine the differences between the treatment arms with regards to patients' pre-treatment expectations and the final aesthetic outcomes and ii) in the experimental arm only, the agreement of the pre-treatment AI-evaluation (output) and patient's post-therapy self-evaluation. DISCUSSION: The project aims to develop an easy-to-use cost-effective AI-powered tool that improves shared decision-making processes. We assume that the CINDERELLA APProach will lead to higher satisfaction, better psychosocial status, and wellbeing of breast cancer patients, and reduce the need for additional surgeries to improve aesthetic outcome.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/cirugía , Nube Computacional , Inteligencia , Satisfacción del Paciente , Estudios Prospectivos
12.
Front Neurol ; 13: 859068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756926

RESUMEN

Background: Traumatic Brain Injury (TBI) is one of the leading causes of injury related mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly heterogeneous both in causes and consequences, complicating medical interpretation and prognosis. Gathering clinical, demographic, and laboratory data to perform a prognosis requires time and skill in several clinical specialties. Machine learning (ML) methods can take advantage of the data and guide physicians toward a better prognosis and, consequently, better healthcare. The objective of this study was to develop and test a wide range of machine learning models and evaluate their capability of predicting mortality of TBI, at hospital discharge, while assessing the similarity between the predictive value of the data and clinical significance. Methods: The used dataset is the Hackathon Pediatric Traumatic Brain Injury (HPTBI) dataset, composed of electronic health records containing clinical annotations and demographic data of 300 patients. Four different classification models were tested, either with or without feature selection. For each combination of the classification model and feature selection method, the area under the receiver operator curve (ROC-AUC), balanced accuracy, precision, and recall were calculated. Results: Methods based on decision trees perform better when using all features (Random Forest, AUC = 0.86 and XGBoost, AUC = 0.91) but other models require prior feature selection to obtain the best results (k-Nearest Neighbors, AUC = 0.90 and Artificial Neural Networks, AUC = 0.84). Additionally, Random Forest and XGBoost allow assessing the feature's importance, which could give insights for future strategies on the clinical routine. Conclusion: Predictive capability depends greatly on the combination of model and feature selection methods used but, overall, ML models showed a very good performance in mortality prediction for TBI. The feature importance results indicate that predictive value is not directly related to clinical significance.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2659-2662, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085894

RESUMEN

Artificial Intelligence-based tools have shown promising results to help clinicians in diagnosis tasks. Radio-genomics would aid in the genotype characterization using information from radiologic images. The prediction of the mutations status of main oncogenes associated with lung cancer will help the clinicians to have a more accurate diagnosis and a personalized treatment plan, decreasing the need to use the biopsy. In this work, novel and objective features were extracted from the lung that contained the nodule, and several machine learning methods were combined with feature selection techniques to select the best approach to predict the EGFR mutation status in lung cancer CT images. An AUC of 0.756 ± 0.055 was obtained using a logistic regression and independent component analysis as feature selector, supporting the hypothesis that CT images can capture pathophysiological information with great value for clinical assessment and personalized medicine of lung cancer. Clinical Relevance - Radiogenomic approaches could be an interesting help for lung cancer characterization. This work represents a preliminary study for the development of computer-aided decision systems to provide a more accurate and fast characterization of lung cancer which is fundamental for an adequate treatment plan for lung cancer patients.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Inteligencia Artificial , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Tomografía Computarizada por Rayos X/métodos
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2037-2040, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086366

RESUMEN

Lung cancer is the leading cause of cancer death worldwide. Early low-dose computed tomography (CT) screening can decrease its mortality rate and computer-aided diagnoses systems may make these screenings more accessible. Radiomic features and supervised machine learning have traditionally been employed in these systems. Contrary to supervised methods, unsupervised learning techniques do not require large amounts of annotated data which are labor-intensive to gather and long training times. Therefore, recent approaches have used unsupervised methods, such as clustering, to improve the performance of supervised models. However, an analysis of purely unsupervised methods for malignancy prediction of lung nodules from CT images has not been performed. This work studies nodule malignancy in the LIDC-IDRI image collection of chest CT scans using established radiomic features and unsupervised learning methods based on k-Means, Spectral Clustering, and Gaussian Mixture clustering. All tested methods resulted in clusters of high homogeneity malignancy. Results suggest convex feature distributions and well-separated feature subspaces associated with different diagnoses. Furthermore, diagnosis uncertainty may be explained by common characteristics captured by radiomic features. The k-Means and Gaussian Mixture models are able to generalize to unseen data, achieving a balanced accuracy of 87.23% and 86.96% when inference was tested. These results motivate the usage of unsupervised approaches for malignancy prediction of lung nodules, such as cluster-then-label models. Clinical Relevance- Unsupervised clustering of radiomic features of lung nodules in chest CT scans can differentiate between malignant and benign cases and reflects experts' diagnosis uncertainty.


Asunto(s)
Neoplasias Pulmonares , Lesiones Precancerosas , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Cintigrafía , Tomografía Computarizada por Rayos X/métodos
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2033-2036, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085795

RESUMEN

In the healthcare domain, datasets are often private and lack large amounts of samples, making it difficult to cope with the inherent patient data heterogeneity. As an attempt to mitigate data scarcity, generative models are being used due to their ability to produce new data, using a dataset as a reference. However, synthesis studies often rely on a 2D representation of data, a seriously limited form of information when it comes to lung computed tomography scans where, for example, pathologies like nodules can manifest anywhere in the organ. Here, we develop a 3D Progressive Growing Generative Adversarial Network capable of generating thoracic CT volumes at a resolution of 1283, and analyze the model outputs through a quantitative metric (3D Muli-Scale Structural Similarity) and a Visual Turing Test. Clinical relevance - This paper is a novel application of the 3D PGGAN model to synthesize CT lung scans. This preliminary study focuses on synthesizing the entire volume of the lung rather than just the lung nodules. The synthesized data represent an attempt to mitigate data scarcity which is one of the major limitations to create learning models with good generalization in healthcare.


Asunto(s)
Tórax , Tomografía Computarizada por Rayos X , Adaptación Psicológica , Generalización Psicológica , Humanos , Pulmón/diagnóstico por imagen
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3854-3857, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086471

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Genomic amplification of MYCN is associated with poor outcomes and is detected in 16% of all NB cases. CT scans and MRI are the imaging techniques recommended for diagnosis and disease staging. The assessment of imaging features such as tumor volume, shape, and local extension represent relevant prognostic information. Radiogenomics have shown powerful results in the assessment of the genotype based on imaging findings automatically extracted from medical images. In this work, random forest was used to classify the MYCN amplification using radiomic features extracted from CT slices in a population of 46 NB patients. The learning model showed an area under the curve (AUC) of 0.85 ± 0.13, suggesting that radiomic-based methodologies might be helpful in the extraction of information that is not accessible by human naked eyes but could aid the clinicians on the diagnosis and treatment plan definition. Clinical relevance - This approach represents a random forest-based model to predict the MYCN amplification in NB patients that could give a faster, earlier, and repeatable analysis of the tumor along the time.


Asunto(s)
Neuroblastoma , Área Bajo la Curva , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/genética , Tomografía Computarizada por Rayos X
17.
J Pers Med ; 12(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35330479

RESUMEN

Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.

18.
Med Biol Eng Comput ; 60(6): 1569-1584, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35386027

RESUMEN

Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.


Asunto(s)
Enfisema , Neoplasias Pulmonares , Diagnóstico por Computador/métodos , Enfisema/patología , Fibrosis , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X/métodos
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2856-2859, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891843

RESUMEN

Lung segmentation represents a fundamental step in the development of computer-aided decision systems for the investigation of interstitial lung diseases. In a holistic lung analysis, eliminating background areas from Computed Tomography (CT) images is essential to avoid the inclusion of noise information and spend unnecessary computational resources on non-relevant data. However, the major challenge in this segmentation task relies on the ability of the models to deal with imaging manifestations associated with severe disease. Based on U-net, a general biomedical image segmentation architecture, we proposed a light-weight and faster architecture. In this 2D approach, experiments were conducted with a combination of two publicly available databases to improve the heterogeneity of the training data. Results showed that, when compared to the original U-net, the proposed architecture maintained performance levels, achieving 0.894 ± 0.060, 4.493 ± 0.633 and 4.457 ± 0.628 for DSC, HD and HD-95 metrics, respectively, when using all patients from the ILD database for testing only, while allowing a more effficient computational usage. Quantitative and qualitative evaluations on the ability to cope with high-density lung patterns associated with severe disease were conducted, supporting the idea that more representative and diverse data is necessary to build robust and reliable segmentation tools.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Tomografía Computarizada por Rayos X , Bases de Datos Factuales , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Tórax
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1707-1710, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891615

RESUMEN

Lung cancer is the deadliest form of cancer, accounting for 20% of total cancer deaths. It represents a group of histologically and molecularly heterogeneous diseases even within the same histological subtype. Moreover, accurate histological subtype diagnosis influences the specific subtype's target genes, which will help define the treatment plan to target those genes in therapy. Deep learning (DL) models seem to set the benchmarks for the tasks of cancer prediction and subtype classification when using gene expression data; however, these methods do not provide interpretability, which is great concern from the perspective of cancer biology since the identification of the cancer driver genes in an individual provides essential information for treatment and prognosis. In this work, we identify some limitations of previous work that showed efforts to build algorithms to extract feature weights from DL models, and we propose using tree-based learning algorithms that address these limitations. Preliminary results show that our methods outperform those of related research while providing model interpretability.Clinical Relevance: The machine learning methods used in this work are interpretable and provide biological insight. Two sets of genes were extracted: a set that differentiates normal tissue from cancerous tissue (cancer prediction), and a set of genes that distinguishes LUAD from LUSC samples (subtype classification).


Asunto(s)
Neoplasias Pulmonares , Algoritmos , Expresión Génica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA