Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 28(5): e202103438, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34811828

RESUMEN

Recently, we presented a strategy for packaging peptides as side-chains in high-density brush polymers. For this globular protein-like polymer (PLP) formulation, therapeutic peptides were shown to resist proteolytic degradation, enter cells efficiently and maintain biological function. In this paper, we establish the role charge plays in dictating the cellular uptake of these peptide formulations, finding that peptides with a net positive charge will enter cells when polymerized, while those formed from anionic or neutral peptides remain outside of cells. Given these findings, we explored whether cellular uptake could be selectively induced by a stimulus. In our design, a cationic peptide is appended to a sequence of charge-neutralizing anionic amino acids through stimuli-responsive cleavable linkers. As a proof-of-concept study, we tested this strategy with two different classes of stimuli, exogenous UV light and an enzyme (a matrix metalloproteinase) associated with the inflammatory response. The key finding is that these materials enter cells only when acted upon by the stimulus. This approach makes it possible to achieve delivery of the polymers, therapeutic peptides or an appended cargo into cells in response to an appropriate stimulus.


Asunto(s)
Péptidos , Polímeros , Péptido Hidrolasas , Polimerizacion , Proteínas
2.
Cell Rep ; 43(3): 113944, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489265

RESUMEN

Population genetics continues to identify genetic variants associated with diseases of the immune system and offers a unique opportunity to discover mechanisms of immune regulation. Multiple genetic variants linked to severe fungal infections and autoimmunity are associated with caspase recruitment domain-containing protein 9 (CARD9). We leverage the CARD9 R101C missense variant to uncover a biochemical mechanism of CARD9 activation essential for antifungal responses. We demonstrate that R101C disrupts a critical signaling switch whereby phosphorylation of S104 releases CARD9 from an autoinhibited state to promote inflammatory responses in myeloid cells. Furthermore, we show that CARD9 R101C exerts dynamic effects on the skin cellular contexture during fungal infection, corrupting inflammatory signaling and cell-cell communication circuits. Card9 R101C mice fail to control dermatophyte infection in the skin, resulting in high fungal burden, yet show minimal signs of inflammation. Together, we demonstrate how translational genetics reveals molecular and cellular mechanisms of innate immune regulation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Micosis , Animales , Ratones , Fosforilación , Proteínas Adaptadoras de Señalización CARD/metabolismo , Transducción de Señal , Inflamación , Antifúngicos
3.
Cell Rep ; 42(7): 112708, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37392388

RESUMEN

Autophagy is an essential cellular process that is deeply integrated with innate immune signaling; however, studies that examine the impact of autophagic modulation in the context of inflammatory conditions are lacking. Here, using mice with a constitutively active variant of the autophagy gene Beclin1, we show that increased autophagy dampens cytokine production during a model of macrophage activation syndrome and in adherent-invasive Escherichia coli (AIEC) infection. Moreover, loss of functional autophagy through conditional deletion of Beclin1 in myeloid cells significantly enhances innate immunity in these contexts. We further analyzed primary macrophages from these animals with a combination of transcriptomics and proteomics to identify mechanistic targets downstream of autophagy. Our study reveals glutamine/glutathione metabolism and the RNF128/TBK1 axis as independent regulators of inflammation. Altogether, our work highlights increased autophagic flux as a potential approach to reduce inflammation and defines independent mechanistic cascades involved in this control.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Animales , Ratones , Enfermedad de Crohn/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Autofagia/genética , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA