Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Australas Phys Eng Sci Med ; 35(1): 105-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22302465

RESUMEN

The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA.


Asunto(s)
Agencias Gubernamentales , Protección Radiológica/normas , Radioterapia de Alta Energía/normas , Dosimetría Termoluminiscente/normas , Australia , Humanos , Servicios Postales/normas , Garantía de la Calidad de Atención de Salud/normas , Control de Calidad
2.
Phys Med Biol ; 65(9): 095011, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182598

RESUMEN

The IAEA is currently coordinating a multi-year project to update the TRS-398 Code of Practice for the dosimetry of external beam radiotherapy based on standards of absorbed dose to water. One major aspect of the project is the determination of new beam quality correction factors, k Q , for megavoltage photon beams consistent with developments in radiotherapy dosimetry and technology since the publication of TRS-398 in 2000. Specifically, all values must be based on, or consistent with, the key data of ICRU Report 90. Data sets obtained from Monte Carlo (MC) calculations by advanced users and measurements at primary standards laboratories have been compiled for 23 cylindrical ionization chamber types, consisting of 725 MC-calculated and 179 experimental data points. These have been used to derive consensus k Q values as a function of the beam quality index TPR20,10 with a combined standard uncertainty of 0.6%. Mean values of MC-derived chamber-specific [Formula: see text] factors for cylindrical and plane-parallel chamber types in 60Co beams have also been obtained with an estimated uncertainty of 0.4%.


Asunto(s)
Radioisótopos de Cobalto/análisis , Método de Montecarlo , Fotones/uso terapéutico , Radiometría/métodos , Radiometría/normas , Consenso , Humanos , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa , Incertidumbre
3.
Phys Med Biol ; 61(14): N362-72, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27366933

RESUMEN

Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.


Asunto(s)
Aceleradores de Partículas/instrumentación , Fotones/uso terapéutico , Radiometría/métodos , Agua/química , Humanos , Método de Montecarlo , Dosificación Radioterapéutica
5.
Radiat Prot Dosimetry ; 155(1): 100-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23152147

RESUMEN

The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53).


Asunto(s)
Radioisótopos de Cobalto , Grafito/efectos de la radiación , Método de Montecarlo , Fantasmas de Imagen , Agua/química , Absorción , Calibración , Humanos , Dosis de Radiación
8.
Radiat Res ; 42(2): 430-2, 1970 May.
Artículo en Inglés | MEDLINE | ID: mdl-4909929
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA