Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(43): 97857-97871, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37603248

RESUMEN

In comparison with northern countries, limited data are available on the occurrence and potential toxicity of cyanobacterial blooms in lakes and ponds in sub-Saharan countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon Aghien (Ivory Coast), which is used for multiple practices by riverine populations and for drinking water production in Abidjan city. The richness and diversity of the cyanobacterial community were high and displayed few variations during the entire survey. The monthly average abundances ranged from 4.1 × 104 to 1.8 × 105 cell mL-1, with higher abundances recorded during the dry seasons. Among the five cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, microcystins, saxitoxin), only microcystins (MC) were detected with concentrations ranging from 0 to 0.364 µg L-1 in phytoplankton cells, from 32 to 1092 µg fresh weight (FW) kg-1 in fish intestines, and from 33 to 383 µg FW kg-1 in fish livers. Even if the MC concentrations in water and fish are low, usually below the thresholds defined in WHO guidelines, these data raise the issue of the relevance of these WHO guidelines for sub-Saharan Africa, where local populations are exposed throughout the year to these toxins in multiple ways.


Asunto(s)
Microcistinas , Agua , Animales , Côte d'Ivoire , Ecosistema , Toxinas de Cianobacterias , Lagos , Peces , Organización Mundial de la Salud
2.
Ecol Evol ; 12(3): e8762, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35356563

RESUMEN

Funding biodiversity conservation strategies are usually minimal, thus prioritizing habitats at high risk should be conducted. We developed and tested a conservation priority index (CPI) that ranks habitats to aid in prioritizing them for conservation. We tested the index using 1897 fish species from 273 African inland lakes and 34 countries. In the index, lake surface area, rarity, and their International Union for Conservation of Nature (IUCN) Red List status were incorporated. We retrieved data from the Global Biodiversity Information Facility (GBIF) and IUCN data repositories. Lake Nyasa had the highest species richness (424), followed by Tanganyika (391), Nokoué (246), Victoria (216), and Ahémé (216). However, lakes Otjikoto and Giunas had the highest CPI of 137.2 and 52.1, respectively. Lakes were grouped into high priority (CPI > 0.5; n = 56) and low priority (CPI < 0.5; n = 217). The median surface area between priority classes was significantly different (W = 11,768, p < .05, effect size = 0.65). Prediction accuracy of Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) for priority classes were 0.912 and 0.954, respectively. Both models exhibited lake surface area as the variable with the highest importance. CPI generally increased with a decrease in lake surface area. This was attributed to less ecological substitutability and higher exposure levels of anthropogenic stressors such as pollution to a species in smaller lakes. Also, the highest species richness per unit area was recorded for high-priority lakes. Thus, smaller habitats or lakes may be prioritized for conservation although larger waterbodies or habitats should not be ignored. The index can be customized to local, regional, and international scales as well as marine and terrestrial habitats.

3.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36287933

RESUMEN

Africa's water needs are often supported by eutrophic water bodies dominated by cyanobacteria posing health threats to riparian populations from cyanotoxins, and Lake Victoria is no exception. In two embayments of the lake (Murchison Bay and Napoleon Gulf), cyanobacterial surveys were conducted to characterize the dynamics of cyanotoxins in lake water and water treatment plants. Forty-six cyanobacterial taxa were recorded, and out of these, fourteen were considered potentially toxigenic (i.e., from the genera Dolichospermum, Microcystis, Oscillatoria, Pseudanabaena and Raphidiopsis). A higher concentration (ranging from 5 to 10 µg MC-LR equiv. L−1) of microcystins (MC) was detected in Murchison Bay compared to Napoleon Gulf, with a declining gradient from the inshore (max. 15 µg MC-LR equiv. L−1) to the open lake. In Murchison Bay, an increase in Microcystis sp. biovolume and MC was observed over the last two decades. Despite high cell densities of toxigenic Microcystis and high MC concentrations, the water treatment plant in Murchison Bay efficiently removed the cyanobacterial biomass, intracellular and dissolved MC to below the lifetime guideline value for exposure via drinking water (<1.0 µg MC-LR equiv. L−1). Thus, the potential health threats stem from the consumption of untreated water and recreational activities along the shores of the lake embayments. MC concentrations were predicted from Microcystis cell numbers regulated by environmental factors, such as solar radiation, wind speed in the N−S direction and turbidity. Thus, an early warning through microscopical counting of Microcystis cell numbers is proposed to better manage health risks from toxigenic cyanobacteria in Lake Victoria.


Asunto(s)
Cianobacterias , Agua Potable , Microcystis , Purificación del Agua , Microcistinas , Lagos/microbiología , Toxinas de Cianobacterias
4.
Harmful Algae ; 96: 101829, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32560832

RESUMEN

Africa is experiencing high annual population growth in its major river basins. This growth has resulted in significant land use change and pollution pressures on the freshwater ecosystems. Among them, the Lake Victoria basin, with more than 42 million people, is a unique and vital resource that provides food and drinking water in East Africa. However, Lake Victoria (LV) has experienced a progressive eutrophication and substantial changes in the fish community leading to recurrent proliferation of water hyacinth and cyanobacteria. Based on an extensive literature review, we show that cyanobacterial biomasses and microcystin concentrations are higher in the bays and gulfs (B&Gs) than in the open lake (OL), with Microcystis and Dolichospermum as the dominant genera. These differences between the B&Gs and the OL are due to differences in their hydrological conditions and in the origins, type and quantities of nutrients. Using data from the literature, we describe the multiple ways in which the human population growth in the LV watershed is connected to the increasing occurrence of cyanobacterial blooms in the OL and B&Gs. We also described the consequences of cyanobacterial blooms on food resources and fishing and on direct water use and water supply of local populations, with their potential consequences on the human health. Finally, we discuss the actions that have been taken for the protection of LV. Although many projects have been implemented in the past years in order to improve the management of waste waters or to reduce deforestation and erosion, the huge challenge of the reduction of cyanobacterial blooms in LV by the control of eutrophication seems far from being achieved.


Asunto(s)
Cianobacterias , Microcystis , Ecosistema , Eutrofización , Lagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA